• Title/Summary/Keyword: 저자정보 기반 기관 고유 식별자

Search Result 3, Processing Time 0.02 seconds

A Study on Utilization of ORCID based Author Identifier at National Level (국가 차원의 ORCID 기반 저자 식별자 활용에 관한 연구)

  • Kim, Eun-Jeong;Noh, Kyung-Ran
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.3
    • /
    • pp.151-174
    • /
    • 2017
  • The diffusion of the internet, the advancement of ICT technology, and digital diffusion have facilitated the streamlining and acceleration of scholarly communication and speeding up research, and the paradigm of scholarly information dissemination is changing. This study introduces the ORCID, a unique author identifier, and examines the ORCID organization's activities, the advantages given to researchers and research institutes, and the membership status. In addition, this paper examines adoptions and utilizations of ORCID in major countries including USA, UK, Italy, and China. Based on this, this paper suggests the necessary considerations for utilizing ORCID in terms of governance, system elements, policy and institutional aspects in an effort to identify authors at national level.

Research on Improving the Identification Accuracy of Knowledge Production Institutions in the Digital Health Field (디지털 헬스 분야 지식생산기관 식별 정확도 제고 방안 연구)

  • Choi, Seongyun;Moon, Seongwuk
    • Journal of Technology Innovation
    • /
    • v.32 no.2
    • /
    • pp.23-58
    • /
    • 2024
  • Despite the important roles of institutions and their collaboration in producing knowledge for innovation, the lack of accurate methods for identifying such knowledge-producing institutions has restricted empirical research on the role of institutions in innovation. This study explores methods to enhance the accuracy of identifying institutions involved in innovation process. To this end, we propose ways to improve accuracy in both aspects of information - data and algorithms - using bibliographic information in the digital health field. Specifically, in the data processing stage before applying algorithms, we address contextual inaccuracies of bibliographic information; in the algorithm application stage, we propose methods to improve the ambiguity of institution names (IND). When compared with the PKG dataset, which is publicly available datasets based on the same bibliographic information, our methods doubled the number of cases available for subsequent analysis. We also discovered that the contribution of Korean institutions in the digital health field is either underestimated or overestimated. The method presented in this study is expected to contribute to empirically researching the role of knowledge-producing institutions in innovation process and ecosystem.

Automatic Clustering of Same-Name Authors Using Full-text of Articles (논문 원문을 이용한 동명 저자 자동 군집화)

  • Kang, In-Su;Jung, Han-Min;Lee, Seung-Woo;Kim, Pyung;Goo, Hee-Kwan;Lee, Mi-Kyung;Goo, Nam-Ang;Sung, Won-Kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.652-656
    • /
    • 2006
  • Bibliographic information retrieval systems require bibliographic data such as authors, organizations, source of publication to be uniquely identified using keys. In particular, when authors are represented simply as their names, users bear the burden of manually discriminating different users of the same name. Previous approaches to resolving the problem of same-name authors rely on bibliographic data such as co-author information, titles of articles, etc. However, these methods cannot handle the case of single author articles, or the case when articles do not have common terms in their titles. To complement the previous methods, this study introduces a classification-based approach using similarity between full-text of articles. Experiments using recent domestic proceedings showed that the proposed method has the potential to supplement the previous meta-data based approaches.

  • PDF