• Title/Summary/Keyword: 저온유통

Search Result 389, Processing Time 0.021 seconds

Effects of Low Storing Temperature on Respiration Rate and Internal Quality of Fresh Ginseng(Panax ginseng C. A. Meyer) (저온저장 온도가 수삼(Panax ginseng C. A. Meyer)의 호흡률 및 내적 품질에 미치는 영향)

  • Kim, Hee-Su;Hong, Seok-In;Jeong, Moon-Cheol;Kim, Gun-Hee;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • As a serial study to investigate optimum storing temperature of fresh ginseng (Panax ginseng C. A. Meyer), the respiration rate and internal quality of the ginseng was compared during storage for 16 weeks at $-3^{\circ}C$, $-1.5^{\circ}C$ and $0^{\circ}C$. At initial storage period, respiration rate of fresh ginseng was lower at lower temperature, but thereafter it was negligible. Changes in the firmness of fresh ginseng were not significantly different by the storage temperature. The soluble solids content in fresh ginseng was rapidly increased in the early part of storage, and fresh ginseng stored at a lower temperature had a lower content of soluble solids. The iodine-stained color for starch of the main root was rapidly changed for 4 weeks, and L value of the color was the highest in the center, followed by the cambium and the cortex. pH were a little change depending upon the storage temperature, and as a whole, pH was the lowest at $-3^{\circ}C$, followed by $-1.5^{\circ}C$ and $0^{\circ}C$. Although the content of crude saponin tended to somewhat increased as the storage period passed, the effect of storage temperature on changes in the content was not clear. In the sensory evaluation of 'unique flavor' of fresh ginseng using 5 point scale, higher than 3 point was marked for 8 weeks at $-3^{\circ}C$, 14 weeks at $-1.5^{\circ}C$ and 16 weeks at $-0^{\circ}C$ during storage (p < 0.05).

Characteristics of Lactic Acid Fermentation of Peach Juice by Lactobacillus plantarum KLAB21 Possessing Antimutagenic Effects (항돌연변이원성 Lactobacillus plantarum KLAB21에 의한 복숭아 주스의 젖산발효 특성)

  • Lee, Yong-Ho;Choi, Sang-Won;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.469-476
    • /
    • 2008
  • Lactic acid fermentation of peach juice was carried out by using Lactobacillus plantarum KLAB21, a strain with a high level of antimutagenic activity, When the fermentation was carried out at 25, 30, 37 and $40^{\circ}C$, the highest level in the viable counts and acid production was obtained at $37^{\circ}C$. The sterilized peach juice showed a higher level of viable counts and acid production than the non-sterilized juice. And more viable counts and acid production were observed in the juice fermented by L. plantarum KLAB21 only than that obtained by a mixed culture of L. plantarum KLAB21 and Leuconostoc mesenteroides cells. When the lactic acid fermentation was performed for 5 days, the first 3 days of fermentation resulted in an increase of the viable counts from 8.2 to of 9.2 of log cfu/mL which is the highest level, as well as a decrease of the residual reducing sugar content from 5.6 to 0.1 % Decrease in the viable counts and m significant changes in the residual reducing sugar content were observed for further fermentation up to 5 days. However, the titratable acid content increased and the pH value decreased during the fermentation for 5 days to reach the highest titratable acid content (1,98%) and the lowest pH value (3.14) after 5 days of fermentation. HPLC analysis of the organic acids showed 1,236 mg% of lactic acid and 841 mg% of galacturonic acid contents in the fermented juice which were not detected in the fresh juice before fermentation. Antimutagenic effects of $100\;{\mu}L$ of the fermented peach juice supernatant were shown to be 97.7% against MNNG(N-methyl-N'-nitro-N-nitrosoguanidine), and 58.3% against NPD(4-nitro-O-phenylenediamine) in Salmonella enterica serovar Typhimurium TA100.

Quality Properties of Capsule Type Meju Prepared with Aspergillus oryzae (Aspergillus oryzae를 이용한 캡슐형 메주의 품질특성)

  • 최재훈;권선화;이상원;남상해;최상도;박석규
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.339-346
    • /
    • 2003
  • In order to improve some problems such as contamination of undesirable mold, mycotoxin production and excessive drying on the surface of traditional meju, we developed a capsule type-meju(CM) coated with steamed black bean and Aspergillus oryzae - rice koji(0.3%, w/w) mixture to surface of traditional meju and fermented at 25$^{\circ}C$ for 14 days under 80% relative humidity. Contamination of undesirable mold on the surface of CM was not detected within 2 weeks and some genus Penicillium molds on control meju without koji were found naturally after 12 days of fermentation. The moisture content of meju was showed to be in the range of 34.7 - 29.4% being 32.7%(w/w) of mean value. Titratable acidities in CMs prepared with black bean(BCM) and soybean(SCM) were much higher than that in control meju, and BCM was similar to SCM. Free sugar content in BCM(123.98 mg%) was 10 times and 2.1 times higher than that in control meju(15.02 mg%) and SCM(59.85 mg%), respectively. Amino type nitrogen content in control meju was 147.00 mg% and its content in BCM(255.50 mg%) was 1.37 times higher than that in SCM(187.25 mg%). Total organic acid content in BCM(95.98 mg%) and SCM(1l9.98 mg%) were much higher than that in control meju(26.44 mg%), and then lactic and malic acid contents were markedly changed according to capsulation of meju. Lightness value(L) of Hunter color index was much higher in BCM than in SCM. Fatty acid composition of CM was not different as compared to control meju. Total free amino acid content in BCM(1039.70 mg%) was 4.4 times and 2.4 times higher than that in control meju(236.45 mg%) and SCM(556.07 mg%), respectively.

Current Research Trend of Postharvest Technology for Chrysanthemum (국화 수확 후 관리기술의 최근 연구 동향)

  • Kim, Su-Jeong;Lee, Seung-Koo;Kim, Ki-Sun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.156-168
    • /
    • 2012
  • Chrysanthemum is a cut flower species that normally lasts for 1 to 2 weeks, in some cases 3-4 weeks. This has been attributed to low ethylene production during senescence. Reduction in cut flower quality has been attributed to the formation of air embolisms that partially or completely blocks the water transport from the vase solution to the rest of the cut flower stem, increasing hydraulic resistance which may cause severe water stress, yellowing, wilting of leaf, and chlorophyll degradation. Standard type chrysanthemum can be harvested when buds were still tightly closed and then fully opened with the simple bud-opening solution. Standard type chrysanthemum can also be harvested when the minimum size of the inflorescence is about 5-6 cm bud which opened into the first flower full-sized flower. While spray varieties can be harvested when 2-4 most mature flowers have opened (40% opening). Cut flowers are sorted by stem length, weight, condition, and so on. Standard chrysanthemum is 80 cm length for standard type and 70cm for spray type. Pre-treatment with a STS, plant regulator such as GA, BA, 1-MCP, chrysal, germicide, and sucrose, significantly improved the vase life and quality of cut flowers. It is well established that vase solutions containing sugar can improve the vase life of cut chrysanthemum. Chrysanthemum is normally packed in standard horizontal fiberboard boxes. Chrysanthemum should normally be stored at $5{\sim}7^{\circ}C$. Precooling resulted in reduction in respiration, decomposition, and transpiration activities as well as decoloration retardation. There was significant difference between "wet" storage in 3 weeks and "dry" storage in 2 weeks. In separate pulsing solution trials, various germicides were tested, as well as PGRs to maintain the green color of leaves and turgidity. Prolonging vase life was attained with the application of optimal solution such as HQS, $AgNO_3$, GA, BA and sucrose. This also retarded senescence in leaves of cut flower stems. Fresh cut chrysanthemum can be transported using a refrigerated van with $5{\sim}7^{\circ}C$. Increasing consumption and usage of cut chrysanthemum of various cultivars would require efficient transport system, and effective information exchange among producer, wholesaler, and consumer.

Population Dynamics of Effective Microorganisms in Microbial Pesticides and Environmental-friendly Organic Materials According to Storing Period and Temperature (저장기간 및 저장온도에 따른 미생물농약 및 친환경 유기농자재 유효미생물의 밀도변동)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Shim, Chang-Kee;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Lee, Seong-Don;Yoo, Jae-Hong
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • To work out quality control methods of environmental-friendly organic materials (EFOMs), the reason and basis for EFOM-selection and farmer's favorite formulation type of EFOMs, etc were investigated on farmers who had been practicing environmental-friendly agriculture. EFOMs used were soil amendments, control agents of plant diseases and insect pests, plant growth promotion formulations, in turns. In EFOMs application time, 22.7% of farmers sprayed EFOMs without delay after they were bought, in other hand, 77.3% of farmers used EFOMs which had been bought and stored for some period. Microbial density on seventeen environmental-friendly microbial formulates (EFMFs) including microbial pesticides, a microbial fertilizer, and environmental-friendly organic materials was investigated at different storing temperature and shelf life. When the microbial density of EFMFs was investigated without delay after they were bought, all used microbial pesticides and a microbial fertilizer was confirmed to be optimal for the certified density but two of environmental-friendly organic materials was confirmed not to be optimal. When microbial density of 17 EFMFs were investigated after storing them for six months at $4^{\circ}C$, only one of 9 microbial pesticides was confirmed not to be optimal, the other hand four of seven environmental-friendly organic materials not to be optimal, which each of their microbial density was less than the certified density. Population dynamics of microbial agents was much more influenced in fluctuated temperature (room temperature) than in static temperature condition ($5^{\circ}C$ and $25^{\circ}C$). Shelf life of microbial agents according to microbial formulation type were high in granule type, liquid wettable type and liquid type in turns.

Quality Characteristics of Low Fat Salad Dressing with Spirulina during Storage (스피루리나 첨가 저지방 샐러드 드레싱 저장 중 품질 특성)

  • Cho Han;Yang Yun-Hyoung;Lee Kun-Jong;Cho Yong-Sik;Chun Hye-Kyung;Song Kyung-Bin;Kim Mee-Ree
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.329-335
    • /
    • 2005
  • Storage quality characteristics of low fat salad dressing with spirulina($0.28\%$) was evaluated. After 2 wks of storage, viscosity decreased according to the prolonged storage time. After 8 wks storage, emulsion stability decreased to $30\%$, which was $25\%$ of freshly made dressing. The fat globule size distribution was not different from that of control until one month of storage, but after 75 days of storage, the fat globule size distribution pattern changed into the increase of larger size($15{\sim}2.0\;{\mu}m$: $11.4\%$ for control, $30.1-32.3\%$ for 75 days of storage). Hunter color of L value decreased, whereas a and b value increased according to the prolonged storage time. TBARS value at 8 wks of storage was increased upto $10\%$ for storage at $5^{\circ}C$ and $15\%$ for storage at $10^{\circ}C$. Antioxidant activity of salad dressing decreased according to the storage temperature and time: $IC_{50}$ values of DPPH radical scavenging activity of 8 wk storage was 157.4 mg/mL at $5^{\circ}C$ and 194.6 mg/mL at $10^{\circ}C$. Total microbial number of salad dressing was increase to 7.9 log(CFU/mL), but E. coli was not detected Based on present condition, low temperature storage was favorable for better quality of spirulina salad dressing.

Introduction of the International Standardization of ISO in the Production and Quality of Herbal Medicines and a Review of Countermeasures (한약재 생산 및 품질부문의 ISO국제표준화 등재현황 소개 및 대응방안 고찰)

  • Kim, Yong Il;Kang, Young Min;Han, Sin-Hee;Hur, Mok;Kim, Young Guk;Chang, Jae Ki
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.257-268
    • /
    • 2018
  • Recently, the international standardization of ISO in the field of Oriental Herbal Medicine has been progressing rapidly under the direction of China's promotion. China's intention to promote international standardization is to extend its influence to the world and beyond the domestic market. The Oriental medicine system in East Asia has similar roots in academic terms, but the medicines that can be supplied and received in each country are different and have developed independently. The international standardization of medicinal herbs is expected to function in a direction that weakens such differentiation and independence. From a commercial point of view, international standardization is no different from creating evaluation criteria for oriental medicinal products, and it is expected that its potential impact on domestic and overseas markets and producers will be large. In particular, the international standardization centered on China can lead to favorable evaluation criteria for China, which may further negatively affect the market competitiveness of domestic raw materials, which have been pushed back by Chinese manufacturers. If the domestic production base is weakened, not only will the farmers suffer but the supply and demand of raw materials will also be manipulated, safety management control will be reduced, and the development of oriental herbal products using domestic raw materials will be hurt. Therefore, in the promotion of international standardization, it is necessary not only to reflect the value of Korean herbal medicine but also to provide strategic responses to protect the domestic production base. However, in the case of recent initiatives, there is no precedent in analyzing influence on the production partners and the related industries. In addition, there are few related papers and reports on the subject, so the publicity process has not been done sufficiently. In response to this, this study will examine the countermeasures against the international standardization of herbal medicines through reviewing its present status and evaluating the agenda of the Korean initiative.

Correlation between phytochemical contents in peel and flesh of cold-stored Fuji apple (저온 저장 후지 사과의 과피와 과육 중 파이토케미컬 함량의 상관관계)

  • Jang-Soo Kim;Sang-Jae Kang
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.112-125
    • /
    • 2024
  • This study determined the relationships between the total anthocyanin content in apple skin and the total polyphenols, flavonoids, proanthocyanidins, and soluble solids contents in the flesh of cold-stored Fuji apples. Total anthocyanin content in apple skin ranged from 0.130±0.005 mg CE/g fw to 0.262±0.028 mg CE/g fw, and the overall average was 0.200±0.008 mg CE/g fw. The total polyphenolic compounds in the flesh was ranged from a 4.283±0.141 mM GAE/g fw to 8.207±0.234 mM GAE/g fw, and the average content was 6.275±0.177 mM GAE/g fw. The total flavonoid content ranged from 4.510±0.080 mM QE/g fw to 2.467±0.458 mM QE/g fw, and the average total flavonoid content was about 3.586 mM QE/g fw. The total proanthocyanidin content was relatively high, ranging from 3.475±0.577 mM EE/g fw to 6.816±0.277 mM EE/g fw, and the soluble solid in the flesh was about 12 °Brix to 14 °Brix. The DPPH radical scavenging activity of extracts from apple flesh ranged from 66.36% to 94.99%, and the ascorbate equivalent concentration was 0.482 mM. The ABTS radical scavenging activity was 99.12% to 99.9%, indicating a higher inhibitory activity than the DPPH inhibitory activity, and the ascorbate equivalent concentration was 0.486 mM. The correlation between the total anthocyanin and total polyphenolic compounds was y = 15.192x + 3.2169 (R2=0.2748), but the concentration of total polyphenolic compounds increased when the total anthocyanin content was increased. The correlation equation of total anthocyanin with total flavonoids was y = 15.18x + 0.5555 (R2=0.6226), with total proanthocyanin was y = 14.918x + 2.3422 (R2=0.3372), and with soluble solid was y = 10.558x + 11.126 (R2=0.1925), indicating that the correlation of total anthocyanin with total flavonoid was higher than that with soluble solid.

Effect of Seasonal Distribution Temperature on Storability of Modified Atmosphere Packaged Baby Leaf Beet (계절별 수송 온도가 MA 포장한 어린잎 비트의 저장성에 미치는 영향)

  • Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Ko, Young-Wook;Kim, Yongduk;Hwang, Myung-Keun;Yu, Wanggun;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • The effects of distribution temperature due to season all changes on quality and storability of baby leaf beet (Beta vulgaris L.) was examined in modified atmosphere (MA) packages. The beet leaf had been harvested at the 10 cm leaf length stage and packaged with an oxygen transmission rate (OTR) film of $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ and then held at 4 different distribution temperatures which were $-2^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $30^{\circ}C$ for 5 hrs and then stored for 18 days at $8^{\circ}C$. The loss of fresh weight of packged baby leaf beet was lowest at the $4^{\circ}C$ treatment, and below 0.6% in all distribution temperature treatments. The atmosphere composition in packages did not show any significant differences among treatments. The oxygen conc. was the highest at 18.0% after the $4^{\circ}C$ treatment, carbon dioxide conc. showed the maximum value of 4% at the $30^{\circ}C$ and $-2^{\circ}C$ treatments, and ethylene conc. was highest at the $10^{\circ}C$ treatment after 10 days in storage. The hardness was the highest at the $4^{\circ}C$ treatment on the final storage day. The $4^{\circ}C$ treatment showed the highest visual quality and the lowest off-odor and aerobic plate count. Therefore, it is necessary to establish a low-temperature distribution system which is controlled under $4^{\circ}C$, because the baby leaf beet's storability and microbial growth are effected even during a short time of 5 hrs during the distribution process.

Changes in Quality of Hanwoo Bottom Round under Different Freezing and Thawing Conditions (한우육의 냉동 및 해동 조건에 따른 품질 변화)

  • Chun, Ho Hyun;Choi, Eun Ji;Han, Ae Ri;Chung, Young Bae;Kim, Jin Se;Park, Suk Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.230-238
    • /
    • 2016
  • This study examined the effects of freezing and thawing conditions on quality of Hanwoo bottom round. The beef samples were frozen by air blast freezing at $-20^{\circ}C$ or ethanol immersion freezing at $-70^{\circ}C$ and then stored at $-20^{\circ}C$ for 10 days. After 10 days of storage, the frozen samples were thawed with air blast thawing at $4^{\circ}C$ or water immersion thawing at $4^{\circ}C$ and subjected to subsequent analyses of drip loss, water holding capacity, thiobarbituric acid reactive substance (TBARS), volatile basic nitrogen (VBN), total aerobic bacteria, and microstructure. Drip loss significantly increased in samples treated with air blast freezing compared to ethanol immersion freezing, whereas freezing and thawing processes had no significant impact on water holding capacity of the samples. Thawing conditions had a much stronger influence on the TBARS and VBN of the samples than freezing conditions. There was no significant difference in the population of total aerobic bacteria among the four samples subjected to one freeze-thaw cycle. In addition, to analyze the effects of freeze-thaw cycle on the quality of beef, three freeze-thaw cycles were performed during storage. Multiple freeze-thaw cycles increased drip loss, TBARS, and VBN and decreased water holding capacity, accelerating microstructural damage. These data indicate that Hanwoo bottom round can be rapidly frozen and thawed by using ethanol immersion freezing and water immersion thawing methods with minimal impact on meat quality.