• Title/Summary/Keyword: 저속조종 수학모델

Search Result 10, Processing Time 0.025 seconds

A Study On Mathematical Model of Manoeuvring Motions of Twin-propeller Twin-rudder Ship for Construction of Real-time Ship-handling Simulator (시뮬레이터 구축을 위한 2축2타선박의 조종운동 수학모델에 관한 연구)

  • 손경호;김용민
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2001.05a
    • /
    • pp.53-77
    • /
    • 2001
  • 선박의 항행안전의 문제가 중요시됨에 따라 선박조종시뮬레이터에 의한 안전성 검토의 필요성이 크게 인식되고 있다. 또한 조종성능을 향상시킬 목적으로 다양한 선종이 출현하고 있고, 이에 따라 선박조종시뮬레이터의 개발에 있어서 선박의 데이터베이스는 필수적이라고 할 수 있다. 따라서 선종에 따른 수학모델을 각각 선박조종시뮬레이터에 적용시킴으로써 다양성이라는 가상현실의 잇점을 한층 부각시킬 수 있다. 본 연구에서는 우수한 추진성능을 목적으로 한 2축2타선박을 대상으로 조종운동 수학모델을 정식화하였다. 구체적으로 항만내에서의 저속시 조종운동을 구현할 수 있는 수학모델에 대해서 검토하였으며, 선체·프로펠러·타의 상호간섭에 대해서도 고려하였다. 또한, 수치시뮬레이션을 수행함으로써 2축2타선박의 기본적인 조종성능을 확인할 수 있었다.

  • PDF

A Study On Mathematical Model of Manoeuvring Motions of Twin-screw and Twin-rudder Ship for Construction of Real-time Ship-handling Simulator (시뮬레이터 구축을 위한 2축2타선박의 조종운동 수학모델에 관한 연구)

  • 손경호;김용민
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.3
    • /
    • pp.1-16
    • /
    • 2001
  • In view of the fact that marine casualties have more often occurred recently, there is a need for ship-handling simulator as a useful tool for maritime training, safety assessment and so on. Moreover various kinds of hull forms have appeared for the purpose of improving ship manoeuvrality. Therefore ship-handling simulator is in need of a database for various ships, and it can make diverse maneuvering simulations possible to apply respective mathematical model to ship-handling simulator. In this paper, we adopted twin-screw and twin-rudder ship and discussed mathematical model of maneuvering motions for her. It was discussed from the viewpoint of hull damping forces at low advance speed and interaction between hull, propeller and rudder. Using this model, maneuvering motion of twin-screw and twin-propeller ship was simulated numerically and her principal manoeuvrability was examined.

  • PDF

A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network (인공신경망을 이용한 선박의 자동접안 제어에 관한 연구)

  • Bae, Cheol-Han;Lee, Seung-Keon;Lee, Sang-Eui;Kim, Ju-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.

Research on the Prediction of Maneuvering Motion for a Twin-Screw Twin-Rudder Ship (2축(軸)2타선(舵船)의 조종운동 추정(推定)에 관한 연구)

  • Lee, Seung Keon;Kim, Yoon Su;Lee, Seung Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.60-65
    • /
    • 1996
  • Mathematical model of maneuvering motion for a single-screw single-rudder ship established and versatile applications to the special situations of maneuvering are attempted. While, the mathematical model for twin-screw twin-rudder ship is not presented so much, because that type of ship is not popular. Lee et al. have examined the characteristics of such ship by captive model tests in 1988. This paper treats new mathematical models for propeller effective wake ($1-w_p$) and effective neutral rudder angle ${\delta}_R$ in the case of twin-screw twin-rudder ship. And some maneuvering motions are calculated with proposed models and compared with exact simulations.

  • PDF

System Configuration of Ship-handling Simulator Based on Distributed Data Processing Network -With Particular Reference to Twin-Screw and Twin-Rudder Ship- (분산처리네트워크에 기반한 선박조종 시뮬레이터의 시스템 구축에 관한 연구 -2축2타선박을 대상으로-)

  • Kyoung-Ho Sohn;Yong-Min Kim;Seung-Yeul Yang;Ki-Young Hong
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.443-453
    • /
    • 2001
  • 선박조종시뮬레이터는 해기사의 교육 훈련, 항만 수로 설계 시 안전성 평가, 선박설계시 조종성능의 검토등으로 널리 활용되고 있다. 본 논문은 최근 한국해양대학교에서 개발한 선박조종시뮬레이터를 소개하고 개발 과정과 활용에 대하여 논의한다. 본 시뮬레이터는 Operation Panel, Instructor's Console, Ship Dynamics Calculation, 3D Bridge View, 2D Bird's Eye View 및 Navigational Indicators의 6구성요소로 이루어져 있으며, 이를 위해 8대의 퍼스널 컴퓨터가 배치되어 있다. 모든 구성요소들은 효율적인 정보 교환을 위하여 분산처리네트워크 방식으로 연결되어 있다. 또한, 본 논문은 항만내에서의 저속 시 조종운동 수학모델과 가상현실 모델링에 대해서도 논의한다. 마지막으로, 부산항에 대한 2축2타선박의 접안 조종 시뮬레이션 예를 보여주고 있다.

  • PDF

Mathematical Model for the Hydrodynamic Forces in Forward or Backward Low Speed Maneuvering (저속(低速) 전.후진(前.後進) 조종(操縱)에 의한 동유체력(動流體力)의 수학(數學)모델)

  • Jin-Ahn Kim;Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.45-52
    • /
    • 1992
  • The Mathematical Model, which can describe the maneuvering motion of a ship in low speed, is highly required these days because it is directly related to the safety of ship in confused harbour. Kose has presented a new model for the low speed maneuvering motion, but the usefulness of it is not confirmed widely. Lets of difficulties are revealed in the case of low speed maneuver, The first is the fact that a ship moves the stirred water region for the longer time than in the case of high speed. So, the hydrodynamic forces, exerted on the hull need to be treated strictly, not by the ordinary differential equation with constant coefficients. Another difficulty is arised from the fact the lateral motion is relatively large comparing to the longitudinal motion in low speed. And, by the result the effect of cross-flow drag or vortex sheding effects are dominant. Besides, the captive model tests of low speed motion has lots of problems. For example, the hydrodynamic forces do not converge to a certain values for the long time. And the absolute values of measured forces are very small, so we must expend lots of efforts to raise up the S/N ratio of the experiments. In this paper, a new mathematical model for the maneuvering motion in low speed, is built up, and the usefulness is discussed, comparing with other models, for example, Kose's model or M.M.G. model or Cross-Flow model, The CMT data for a PCC model of 3.00 M length, released from the RR-742 of Japan, are used for the validation of each models.

  • PDF

Prediction of Manoeuvrability of a Ship with Low Forward Speed in Shallow Water (천수 영역에서 저속 운항하는 선박의 조종성능 추정에 관한 연구)

  • Kim, Se-Won;Yeo, Dong-Jin;Rhee, Key-Pyo;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2008
  • In this paper, a mathematical model for a ship manoeuvring with low forward speed in shallow water was suggested. Based on the cross flow model with low forward speed in deep sea, hull, propeller and rudder models were modified to consider the shallow water effects. Static drift and PMM tests were performed to obtain the cross flow drag coefficients and hydrodynamic coefficients. To validate suggested mathematical model, numerical simulation results were compared with those of sea-trials. Through comparisons, it was concluded that suggested mathematical model could give proper estimation on turning test results.

Improvement of Prediction Technique of the Ship′s Manoeuvrability at Initial Design Stage (초기 설계단계에서 선박조종성능 추정에 대한 정도향상 연구)

  • Ho-Young Lee;Sang-Sung Shin;Deuk-Joon Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • In this paper, we studied to improve Inoue's[1] and Kijima's[2] model used to predict ship's manoeuvrability at initial design state. To perform this work, we carried out PMM(Planar motion Mechanism) test and rudder open water test for 12 models of low-speed blunt-ship which have horn type rudders and bulbs in afterbody. As we adopted MMG(Mathematical Modelling Group) model, we could analyze hydrodynamic and MMG experimental coefficients. The regression analyses by principle parameters were carried out for hydrodynamic and MMG experimental coefficients. The regression analyses by principle parameters were carried out for hydrodynamic and MMG experimental coefficients and the equations by regression analysis wee used to search sensitivities and to estimate ship's manoeuvrability. We had simulated ship's manoeuvrability to check revised MMG.

  • PDF

An Experimental Study on the Characteristics of Propeller and Rudder in Oblique Towing Conditions (사항상태(斜航狀態)에서 프로펠러와 타(舵)의 특성(特性)에 관한 실험적 연구)

  • S.K. Lee;H.S. Kim;S.J. Kim;M.J. Song;S.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.66-72
    • /
    • 1994
  • For the reliable prediction of maneuverability of a ship, lots of captive model tests have been carried out for over 10 years. But the parameters appearing in the mathematical model are so versatile and showing complex characteristics, and it is still hard to establish the useful formulae that we can adopt directly in the design stage. In this paper, the most important parameters in the mathematical model. i.e.($1-\omega_P$) the effective wake fraction at propeller, and $\delta_R(\beta_R)$), the effective rudder inflow angles are investigated by the captive model tests at the circulating water channel. The model is tested at designed speed and at low speed, and the drafts at both full load and ballast load conditions are taken. Propeller thrusts and rudder normal forces are measured at the given drift angle and propeller revolution. These forces are used for the analysis of the effective flow velocity or flow direction, to the propeller or rudder.

  • PDF

A Study on the Influence of Mathematical Models of Manoeuvrability on the Simulation of Ship Berthing Operation (선박의 접안 시뮬레이션에서 조종수학모델의 영향에 관한 고찰)

  • Chung, Kwang Sic;Lee, Seung-Keon;Jeong, Jae-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.15-16
    • /
    • 2014
  • As trade cross the world is increasing these days, safe and effective management of harbour system is becoming important issue. With this background, the development of automatic time-domain simulation programme for ship berthing operation has been being peformed and PD (Proportional Derivative) controller has been used to control the speed and the heading angle of ships. This paper provides feasibility study for developing the time-domain simulation programme for berthing operation of ships with analysing advantages and drawbacks of the two different mathematical models, one is for low advance speed of ships by Kose (1984) and the other is MMG model for normal advance speed, through the simulations with various initial heading angles and positions of the ship.

  • PDF