• Title/Summary/Keyword: 저비점 함산소물질

Search Result 2, Processing Time 0.01 seconds

The Effect of Low Boiling Point Oxygenates on the Diesel Engine Performance and Emissions (저비점 함산소물질이 디젤기관의 성능과 배기배출물에 미치는 영향)

  • 김봉석;송용식;궁본등
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2004
  • In the study, the effect of low boiling point oxygenates in high viscous fuels on the exhaust emissions has been investigated for a single cylinder DI diesel engine. It was tested to estimated change of engine performance and exhaust emission characteristics for the base fuels and low boiling point oxygenates blended fuel which have six kinds of fuels and various mixed rates. The results of the study may be con eluded as follows By blending of various low boiling point oxygenated agents to lower grade fuels, significant improvements were simultaneously obtained in smoke, CO, PM, SOF and BSEC. Especially, these trends were remarkably obtained by retarding injection timing, by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than non-oxygenated agents. Also, it was revealed that when 20 vol.% DMM added to high viscosity fuels and injection timing was retarded, Nox-smoke trade off relationship was much better than that of ordinary diesel fuel. Thus, lower grade fuels with high viscosity could be expected to be used efficiently and cleanly in diesel operation by blending low boiling point oxygenates.

A Study on Performance Characteristics of the Diesel Engine using High Viscous Oils by blending Low Boiling Point Oxygenates (저비점 함산소물질 혼합에 의한 고점도유 사용 디젤기관의 성능특성 연구)

  • ;Noboru Miyamoto
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.44-51
    • /
    • 2003
  • By blending of various low boiling point oxygenated agents to lower grade fuels, significant improvements were simultaneously obtained in smoke, CO, PM, SOF and BSEC. Especially, our trends were remarkably obtained by retarding injection timing, by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than non-oxygenated agents. Also, it was revealed that when 20vo1.% DMM added to high viscosity fuels and injection timing was retarded, NOx-smoke trade off relationship was much better than that of ordinary diesel fuel. Thus, lower grade fuels with high viscosity could be expected to be used efficiently and cleanly in diesel operation by blending low boiling point oxygenates.