• Title/Summary/Keyword: 저고도

Search Result 416, Processing Time 0.025 seconds

Reviewing the Explosively Deepening Cyclone(Cyclonic Bomb) over the East Sea with the Satellite Observations (위성관측에 의한 동해상의 폭발적 저기압의 고찰)

  • 정효상
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The characteristics of rapid development of the low pressure system over the East Sea from 06 to 08 Nov., 1995 has been analyzed in detail by the synoptic numerical products and satellite observations. The Low system was initially triggered the development of the baroclinic leaf cloud over the border of the northern part of Korea and China and moved eastward and then developed explosively com-ma or lambda type cloud system over the East Sea. To forecast well the general development and movement of the coastal winter cyclone over the East Sea popularly in a numerical simulation by several scientists, the large baroclinicity, continuous support of water vapor, and sequential cold outbreak over the warm sea surface have been more commonly concerned about. The cyclone which the central surface pressure was dropped 40hPa within 24 hours has often accompanied strong wind and heavy snow- or rain-fall in the winter season. In all successive observations with 12-hourly satellite imagery and analyzed meteorological variables in this period, the centers of the sea-level pressure and 500hPa geopotential height associated with this cyclone were typically illustrated by moving farther eastward using GMS combined enhanced IR images. The maxi-mum wind sustained by this system with the intensity and central pressure of tropical storm was about 60 knots with the center pressure drop of 44hPa/day similar to the North American cyclonic bomb and Atlantic storm.

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

Management of Construction Fields Information Using Low Altitude Close-range Aerial Images (저고도 근접 항공영상을 이용한 현장정보관리)

  • Cho, Young Sun;Lim, No Yeol;Joung, Woo Su;Jung, Sung Heuk;Choi, Seok Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.551-560
    • /
    • 2014
  • Compare to other industrial sites, the civil construction work not only takes longer time but also has made of complicated processes, such as the integrated management, process control, and quality control until the completion. However, it is hard to take control the construction sites, since numerous issues are always emerged. The study purposes on providing the dataset to synthetically manage and monitor the civil construction site, main design, drawings, process, construction cost, and others at real-time by using the low altitude close-range aerial images, based on UAV, and the GPS surveying method for treating the three-dimensional spatial information quickly and accurately. As a result, we could provide the latest information for the quick decision-making following from planning to completion of the construction, and objective site evaluation by the high-resolution three-dimensional spatial information and drawings. Also, the present map, longitudinal map, and cross sectional view are developed to provide various datasets rapidly, such as earthwork volume table, specifications, and transition of ground level.

A study on enhancement of nitrogen removal efficiency on low concentration influent sewage (단계유입과 내부순환을 이용한 저농도 하수의 질소처리효율 향상을 위한 연구)

  • Choo, Tai-Ho;Kim, Tae-Ki;Ok, Chi-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.675-680
    • /
    • 2010
  • This study was investigated to complement nitrogen removal of low concentration influent municipal sewage. The following are the results of the effect of Internal Recircularion and Step Feed rates on Treatment efficiency at a BOD low concentration influent municipal sewage. Up to 90.0% of BOD, 87.8% of COD, 71.0% of T-N, 75.3% of T-P were removed on average at a low concentration influent. Whereas BOD and T-P were removed without any relations to Step Feed rates, T-N was influenced. Nitrogen removal efficiencies in 80% of Step Feed rates was 65%, which was caused by the lack of Carbon Source for denitrification. Nitrogen removal efficiency in 40% of Step Feed rates was 58%, which means it was not removed but dischared. Consequently, the efficiency was 73%, 80%, and 78% in 70%, 60% and 50% of Step Feed rates, which was concluded as the best range of Step Feed rates. Nitrogen removal efficiency increased under the condition of Internal Recircularion. At over 150% of Internal Recircularion rate, the efficiencies were not affected any more. It is believed that lots of Recircularion caused inflow of DO to anoxic tank. Therefore, the most appropriate Internal Recircularion rate can be concluded as 50~150%.

Extraction of Waterline Using Low Altitude Remote Sensing (저고도 원격탐사 영상 분석을 통한 수륙경계선 추출)

  • Jung, Dawoon;Lee, Jong-Seok;Baek, Ji-Yeon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.337-349
    • /
    • 2020
  • In this study, Helikite, Low Altitude Remote Sensing (LARS) platform, was used to acquire coastal images. In the obtained image, the land and water masses were divided using four types of region clustering algorithms, and then waterline was extracted using edge detection. Quantitative comparisons were not possible due to the lack of in-situ waterline data. But, based on the image of the infrared band where water masses and land are relatively clear, the waterlines extracted by each algorithm were compared. As a result, it was found that each algorithm differed significantly in the part where the distinction between water masses and land was ambiguous. This is considered to be a difference in the process of selecting the threshold value of the digital number that each algorithm uses to distinguish the regions. The extraction of waterlines through various algorithms is expected to be used in conjunction with a Low Altitude Remote Sensing system that can be continuously monitored in the future to explain the rapid changes in coastal shape through several years of long-term data from fixed areas.

Characteristics and classification of landform relieves on mountains and valleys with bedrock types (기반암별 산지와 곡지의 지형 기복 특성과 유형)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • This study analyzed characteristics of landform relieves on 12 bedrock whole(W) areas and 24 mountain(M) and valley(V) areas. Based on this result, characteristics and relations between bedrocks and landform relief were classified as follows. 1) gneiss-height M and granite-height W, M, V areas show active stream incision for uplift. However these areas have relatively low relief and grade compared to high altitude, because effect of denudation don't pass on whole slope. 2) gneiss-height W, V, gneiss-mid M, schist M, granite-mid M, volcanic rock W, M, sedimentary rock-height(conglomerate) W, M, V, sedimentary rock-mid (sandstone and shale) M, limestone W, M areas have active stream erosion and mass movement, but landform relieves are on the high side, because these have resistant bedrock and geological structure against weathering and erosion. 3) gneiss-mid W, V, schist W, V, granite-mid W, V, volcanic rock V, sedimentary rock-mid W, V, sedimentary rock-low(shale) M, limestone V areas landform relieves are on the low side, because these have weak resistance and active weathering, mass movement, erosion, transportation and deposit. 4) gneiss-low W, M, V, granite-low W, M, V, sedimentary rock-low W, V areas landform relieves are very low, because these don't have active erosion and mass movement as costal area with low altitude.

Approximate Dynamic Programming Based Interceptor Fire Control and Effectiveness Analysis for M-To-M Engagement (근사적 동적계획을 활용한 요격통제 및 동시교전 효과분석)

  • Lee, Changseok;Kim, Ju-Hyun;Choi, Bong Wan;Kim, Kyeongtaek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • As low altitude long-range artillery threat has been strengthened, the development of anti-artillery interception system to protect assets against its attacks will be kicked off. We view the defense of long-range artillery attacks as a typical dynamic weapon target assignment (DWTA) problem. DWTA is a sequential decision process in which decision making under future uncertain attacks affects the subsequent decision processes and its results. These are typical characteristics of Markov decision process (MDP) model. We formulate the problem as a MDP model to examine the assignment policy for the defender. The proximity of the capital of South Korea to North Korea border limits the computation time for its solution to a few second. Within the allowed time interval, it is impossible to compute the exact optimal solution. We apply approximate dynamic programming (ADP) approach to check if ADP approach solve the MDP model within processing time limit. We employ Shoot-Shoot-Look policy as a baseline strategy and compare it with ADP approach for three scenarios. Simulation results show that ADP approach provide better solution than the baseline strategy.

Methodology of Test for sUAV Navigation System Error (소형무인항공기 항법시스템오차 시험평가 방법)

  • SungKwan Ku;HyoJung Ahn;Yo-han Ju;Seokmin Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2021
  • Recently, the range of utilization and demand for unmanned aerial vehicle (UAV) has been continuously increasing, and research on the construction of a separate operating system for low-altitude UAV is underway through the development of a management system separate from manned aircraft. Since low-altitude UAVs also fly in the airspace, it is essential to establish technical standards and certification systems necessary for the operation of the aircraft, and research on this is also in progress. If the operating standards and certification requirements of the aircraft are presented, a test method to confirm this should also be presented. In particular, the accuracy of small UAV's navigation required during flight is required to be more precise than that of a manned aircraft or a large UAV. It was necessary to calculate a separate navigation error. In this study, we presented a test method for deriving navigation errors that can be applied to UAVs that have difficulty in acquiring long-term operational data, which is different from existing manned aircraft, and conducted verification tests.

Conceptual Design of a Launch Vehicle for Lunar Exploration by Combining Naro-1 and KSLV-II (나로호와 한국형발사체를 연계한 달탐사 발사체 개념설계)

  • Yang, Won-Seok;Kim, So-Yeon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.654-660
    • /
    • 2014
  • In this paper, a conceptual design of a launch vehicles is proposed by combining Naro-1 and KSLV-II. For trans-lunar injection (TLI) to lunar orbit at 300 km LEO, the target performance is defined same as that of KSLV-II, which delivers an object of 2.6 tons into 300 km LEO. The proposal launch vehicle concept of this study is combination of 1st stage of KSLV-I and 2-3rd stage of KSLV-II. Thus, it is possible to reduce the development time and also could expand the options for national launch vehicle capabilities with proven technologies.

The Influences of Immune Function and Respiratory System on Aerobic Exercise by Exposed Acute Hypobaric Hypoxic Environment. (급성 저압.저산소 노출에서의 유산소성 운동이 면역기능 및 호흡기계에 미치는 영향)

  • Lee, Dong-Jun
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.825-831
    • /
    • 2009
  • The purpose of this study was to investigate the influences of immune function and respiratory system on aerobic exercise of 75 %HRmax intensity in an exposed acute hypobaric hypoxic environment. The subjects were 20 male college students, 10 of which were soccer players (19.6${\pm}$0.8 yr, BMI 22.3${\pm}$1.0, V02max 56.5${\pm}$4.8 mljkgjmin) and 10 general students (22.2${\pm}$2.3 yr, BMI 22.7${\pm}$2.1, $VO_{2max}$ 50.5${\pm}$6.6 ml/kg/min). Items of measurement after exercise on level and high altitude were $O_{2}$, $CO_{2}$, ventilation (VE), respiratory frequency, respiratory quotient, RBC, MCV, MCH, MCHC, Hb, Hct, reticulocyte, WBC, neutrophil, lymphocyte, monocyte, basophil, and immunoglobulin (IgA, IgD, IgG, IgM). As the result of the verifying hypothesis, these results may suggest three new findings: first, to produce hypoxic ventilatory depression not only at level land but also at 3,000 m high altitude during 30 minute aerobics exercise of 75 %HRmax intensity, second to be more excellent for soccer players in adaptation and sensibility on response of respiratory system at high altitude, and third, to change each other by regular exercise habits or altitude in the monocyte.