• Title/Summary/Keyword: 재활용 골재

Search Result 289, Processing Time 0.027 seconds

Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates (잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.523-529
    • /
    • 2014
  • Large amounts of waste shells have been produced each year from shellfish raising industries located in Korean costal areas. Due to the limited space for the waste shell disposal, the related environmental problem has been a serious issue. It is believed that using the waste shells as a source of aggregate for mortar, concrete or bricks can be a good solution. In this research, possibility of utilizing waste shells as an aggregate of mortar is investigated. Waste shells of manila clam, cockle, clam, sea mussel, and oyster were properly crushed, sieved, and sorted to meet the requirements of the grading of standard fine aggregate. After that, the waste shells were used as partial and total replacement of the fine aggregate, and their absorption and 28-day compressive strengths of mortar were measured. In general, replacement of waste shells increased the absorption and decreased the strength. However, one specimen with cockle increased compressive strength as replacement ratio increased. Mortar with cockle of 50% and 100% replacement showed higher compressive strength than that of control mortar. This increase of compressive strength was found to be affected by the strong interfacial bonding properties of the cockle and a cement matrix.

Physical Properties of Sulfur Concrete with Modified Sulfur Binder (유황개질 바인더를 사용한 유황 콘크리트의 물리적 특성)

  • Bae, Sung Geun;Gwon, Seong Woo;Kim, Se Won;Cha, Soo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.763-771
    • /
    • 2014
  • Recently, a huge amount of sulfur has been produced as a byproduct of petroleum refining processes in Korea. Sulfur concrete is made of modified sulfur binder instead of cement paste, which has advantages of reducing $CO_2$ emission from cement industry as well as utilizing surplus sulfur. Also, sulfur concrete is a sustainable material that can be repetitively recycled. In this study, the physical properties of sulfur concrete are experimentally investigated. From the test results, sulfur concrete showed compressive strengths higher than at least 50MPa. Also, the unit weight, modulus of elasticity and splitting tensile strength of sulfur concrete was similar to that of Portland cement concrete (PCC). The coefficient of thermal expansion of sulfur concrete was a little larger than that of Portland cement concrete and sulfur concrete with mineral filler is helpful to lower the coefficient of thermal expansion. recycled aggregate sulfur concrete resulted in a slight reduction in the compressive strength, but sulfur concrete with recycled aggregate can achieve the high strength characteristics.

A Study on the Fundamental Properties of Concrete Using of the Oyster Shells (굴패각 콘크리트의 기본특성에 관한 연구)

  • Koo, Hae-Shik;Jun, Hak-Su;An, Yong-Deok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study is to analyze the application of the oyster shells as a substitute fine aggregate of concrete. For this purpose, the fundamental experiments of the composed materials and the variations of the main factors on it were considered and then the variations of workability and strength properties of the specimens with each case were also studied. The experimental results on the properties as construction material showed that the use of oyster shells in concrete would not cause abnormal chemical reactions or lead to the formation of any new objects, the workability and strengths decreased with increase in proportion of oyster shells. The compressive strength of concrete with oyster shells is developed as much as that of normal concrete and the grain size of oyster shells is superior on 3.0~5.0mm and the percentage of substitution of them to fine aggregate about 30% from the properties of concrete with them. The relationship equation between compressive strength and tensile strength is ( ).

A study on the Mechanical Properties of Concrete using Electronic Waste as Fine Aggregate (전자폐기물을 잔골재로 적용한 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Yong-Moo;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • The quantities of electronic waste have been increased rapidly, and was caused variety problems such as environmental pollution or dissipation of resource. So, it needed to development of recycling technology about heavy metal in the electronic waste. Meanwhile, filler material (concrete or mortar) was used for shielding radioactive waste, however, it did not used materials that it is proved radiation shielding performance. So, there is a lack of confidence in the shielding performance. Therefore, in this paper, mechanical properties of concrete was evaluated for the applicability using electronic waste as fine aggregate of filler material. From the test results, compressive and flexural strength and elasticity modulus and the micro pore in the $1{\mu}m$ range was significantly affected by substitution of electronic waste, however, it could be improved the performance by using mineral admixture as binder. So, it is shown that the electronic waste could be applicable as fine aggregate of filler material.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Application of Sand Mat Substitutel using Steel Slag (제강슬래그를 이용한 샌드매트 대체재료의 적용성 연구)

  • Park, Jong-Beom;Lee, Byung-Chan;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • Steel slag has the nature to hydrate and expand when in contact with non-reacting CaO and water, and thus can be used only in limited scope for landfill disposal as well as for recycling as civil construction aggregates. In order to use such steel slags more efficiently, the applicability of steel slag as sand mat alternative material was reviewed. In general, sand mat is used in soft ground surface reinforcement method and horizontal drain method, and is installed simultaneously with soft ground vertical drain method. Therefore in this study steel slag designing method and application standard etc were examined to recycle steel slag as sand mat alternative material, and laboratory soil test and model test were done. Test results indicated that the designing method and application standard meet various environment and quality standards, meaning that steel slag can be utilized as sand mat alternative material, and analysis of slag mat bearing capacity also indicated that use of steel slag produces double or more bearing capacity compared with existing sand mat.

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

The Quality of artificial lightweight aggregates using waste PET bottles and Properties of their mortar (폐 PET병을 재활용한 인공경량골재의 품질 및 모르타르의 특성)

  • Choi, Yung-Wang;Lim, Hak-Sang;Chung, Jee-Seung;Choi, Wook;Hwang, Youn-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.631-636
    • /
    • 2002
  • This study shows basic data for using as the structural lightweight aggregate. This will be the procedural method of recycling environmental close waste PET bottle lightweight aggregate(PBLA) that is rapidly increased the amount of production of waste PET bottle recently, the quality of developed PBLA and the fundamental properties by analyzing of mortar containing with PBLA. After experiment, the result shows the PBLA quality that have oven dry specific gravity of 1.39, unit volume weight of 844 kg/m$^3$ and absorption rate of 0% is satisfied with qualify regulation of lightweight aggregate. The flowability of mortar containing PBLA is increased maximum 16% with increasing mixing ratio of PBLA, however the compressive strength of mortar is decreased maximum 35% with increasing mixing ratio of PBLA.

  • PDF

Freezing-and-Thawing Resistance and Strain Characteristics of Recycled Concrete (재생콘크리트의 동결융해저항성과 변형특성)

  • 김광우;이봉학;도영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.115-122
    • /
    • 1992
  • 폐쇄 폐콘크리트를 재활용한 재생콘크리트의 강도특성을 천연골재를 사용한 일반콘크리트와 비교하였다. 동결융해 처리수의 압축강도와 3점휨 재하시험하의 변형율을 측정하였다. 재생콘크리트는 동결융해 처리 후 압축강도 보존율이 더 높았다. 재생콘크리트는 또한 높은 변형율과 처짐에 민감함을 보였으나 파괴와 관련된 다른 성질들은 일반콘크리트와 유사하거나 더 좋은 것으로 나타났다. 그러므로 폐콘크리트를 구조용 콘크리트 제조에 재 사용이 가능할 것으로 보여진다. 그러나 실제 사용을 위하여는 콘크리트에 있어서 중요한 성질인 압축강도가 더 증진되어야 하며 최대 변형율도 보다 자세히 점검되어야 한다.