• Title/Summary/Keyword: 재킷식 해양구조물

Search Result 5, Processing Time 0.017 seconds

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

Long-Term Measurement of Static Strains of Jacket Type Offshore Structure under Severe Tidal Current Environments (빠른 조류 환경에서의 재킷식 해양구조물 시공 중 및 운영 중 장기 변형률 계측 및 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Park, Jun-Seok;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.389-398
    • /
    • 2012
  • In this study, structural strain responses of the jacket-type Uldolmok tidal current power plant structure under severe tidal environments were measured and analyzed using long-term measurement system during construction and also operation. It was observed that there were significant changes in strain responses at the steps of jacket lifting, block loading, pile ejection and insertion. Strains due to dead loads and tidal loads were analyzed before and after removal of a jacket leg, and it was also found that the strains due to dead load were much significantly changed after jacket leg removal. From the measurement data during operation, it was found that strain responses were fluctuated with M2 and M4 tidal periods and also relatively short period of about 10 min due to the peculiar tidal characteristics in the Uldolmok strait. Finally, the neural network-based non-parametric estimation models were investigated to build up the signal-based structural damage monitoring system.

Development of a Damage Monitoring Technique for Jacket-type Offshore Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 활용한 재킷식 해양구조물의 손상 감지 기법 개발)

  • Park, Hyun-Jun;Koo, Ki-Young;Yi, Jin-Hak;Yun, Chung-Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.399-408
    • /
    • 2011
  • Development of smart sensors for structural health monitoring and damage detection has been advanced remarkably in recent years. Nowadays fiber optic sensors, especially fiber Bragg grating (FBG) sensors, have attracted many researchers' interests for their attractive features, such as multiplexing capability, durability, lightweight, electromagnetic interference immunity. In this paper, a damage detection approach of jacket-type offshore structures by principal component analysis (PCA) technique using FBG sensors are presented. An experimental study for a tidal current power plant structure as one of the jacket-type offshore structures was conducted to investigate the feasibility of the proposed method for damage monitoring. It has been found that the PCA technique can efficiently eliminate environmental effects from measured data by FBG sensors, resulting more damage-sensitive features under various environmental variations.

Impedance-based Long-term Structural Health Monitoring for Jacket-type Tidal Current Power Plant Structure in Temperature and Load Changes (온도 및 하중 영향을 고려한 임피던스 기반 조류발전용 재킷 구조물의 장기 건전성 모니터링)

  • Min, Jiyoung;Kim, Yucheong;Yun, Chung-Bang;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.351-360
    • /
    • 2011
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for offshore structure, there are few cases to apply structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure under changes in temperature and transverse loadings. Principal component analysis (PCA) was applied using conventional damage index to eliminate principal components sensitive to environmental change. It was found that the proposed PCA-base approach is an effective tool for long-term SHM under significant environmental changes.

Reliability Analysis of Offshore Wind Turbines Considering Soil-Pile Interaction and Scouring Effect (지반과 말뚝의 상호작용 및 세굴현상을 고려한 해상풍력터빈의 신뢰성 해석)

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.222-231
    • /
    • 2016
  • Multi-member lattice-type structures including jackets and tripods are being considered as good alternatives to monopile foundations for relatively deep water of 25-50 m of water depth owing to their technical and economic feasibility. In this study, the reliability analysis of bottom-fixed offshore wind turbines with monopile and/or multi-member lattice-type foundations is carried out and the sensitivities of random variables such as material properties, external wind loadings and scouring depth are compared with respect to different types of foundations. Numerical analysis of the NREL 5 MW wind turbine supported by monopile, tripod and jacket substructures shows that the uncertainties of soil properties affect the reliability index more significantly for the monopile-supported OWTs while the reliability index is not so sensitive to the material properties in the cases of tripod- and jacket-supported OWTs. In conclusion, the reliability analysis can be preliminarily carried out without considering soil-pile-interaction in the cases of tripod- and jacket-supported OWTs while it is very important to use the well-measured soil properties for reliable design of monopile-supported OWTs.