• Title/Summary/Keyword: 재정안정화

Search Result 41, Processing Time 0.016 seconds

Performance Comparison of Machine Learning based Prediction Models for University Students Dropout (머신러닝 기반 대학생 중도 탈락 예측 모델의 성능 비교)

  • Seok-Bong Jeong;Du-Yon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • The increase in the dropout rate of college students nationwide has a serious negative impact on universities and society as well as individual students. In order to proactive identify students at risk of dropout, this study built a decision tree, random forest, logistic regression, and deep learning-based dropout prediction model using academic data that can be easily obtained from each university's academic management system. Their performances were subsequently analyzed and compared. The analysis revealed that while the logistic regression-based prediction model exhibited the highest recall rate, its f-1 value and ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) value were comparatively lower. On the other hand, the random forest-based prediction model demonstrated superior performance across all other metrics except recall value. In addition, in order to assess model performance over distinct prediction periods, we divided these periods into short-term (within one semester), medium-term (within two semesters), and long-term (within three semesters). The results underscored that the long-term prediction yielded the highest predictive efficacy. Through this study, each university is expected to be able to identify students who are expected to be dropped out early, reduce the dropout rate through intensive management, and further contribute to the stabilization of university finances.