• Title/Summary/Keyword: 재접힘

Search Result 34, Processing Time 0.021 seconds

Eshcherichia coli 로부터 inclusion body 형태로 발현한 LK68의 solid-phase refolding 및 정제

  • Choe, Won-Chan;Seo, Chang-U;Ryu, Gang;Jeong, Gyeong-Hwan;Lee, Eun-Gyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.485-488
    • /
    • 2002
  • 재접힘 고체상 재접힘은 높은 재현성을 보였으며 고체상 재접힘된 단백질은 Native와 같은 구조를 형성하였다. 따라서 이 연구는 고체상 재접힘 방법이 분자간의 상호작용을 억제하는 것이 응집현상을 탈피하게된 결과 일 것이라는 것에 의해 재접힘 수율을 높일 수 있다고 기대한다.

  • PDF

Solid-Phase Refolding of Poly-Lysine fusion Protein of hEGF and Angiogenin (Poly-lysine이 연결된 hEGF와 angiogenin의 융합단백질의 고체상 재접힘)

  • Park, Sang-Joong;Ryu, Kang;Suh, Chang-Woo;Chai, Young-Gyu;Kwon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as an inclusion body in recombinant E. coli, yet when the conventional solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably because of the opposite surface charge resulting from the vastly different pl values of each domain. Accordingly the solid-phase refolding process, which exploits the ionic interactions between a solid matrix and the protein, was tried, however the ionic binding yield was also very low regardless of the resins and pH conditions used. Therefore, to provide a higher affinity toward the solid matrix, six Iysine residues were tagged to the N-terminus of the hEGF domain. When cation exchange resins, such as heparin- or CM-Sepharose, were used as the matrix, the adsorption capacity increased 2.5~3-fold and the subsequent refolding yield increased nearly 15-fold compared to the conventional process. A similat result was also obtained when an Ni-NTA metal affinity resin was used.

Solid-Phase Refolding of Inclusion Body Protein in Packed Bed Adsorption and Expanded Bed Adsorption Chromatography (Packed Bed Adsorption과 Expanded Bed Adsorption 크로마토그래피를 이용한 내포체 단백질의 고체상 재접힘)

  • 최원찬;김민영;서창우;이은규
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.500-505
    • /
    • 2003
  • ‘LK (lipoprotein kringle) 68’is a polypeptide of a modified ansiostatin consisting of three kringle structures that might be clinically useful as a potential cancer therapeutics. It can be produced by overexpressing it as inclusion body in recombinant E. coli. In this study, solid-phase refolding processes using packed bed adsorption (PBA) and expanded bed adsorption (EBA) column were carried out to compare their refolding yields with that of the conventional, solution-phase refolding process, For the solution-phase and the PBA-mediated processes employing Q-Sepharose, washed inclusion body was used as the starting material, whereas both washed inclusion body and E. coli homogenate were used for the EBA-mediated process employing streamline DEAE. On the final recovery LK68 per unit mass of wet cell basis, the EBA- and PBA-mediated processes showed about 2.7- and 1.5-fold higher yields, respectively, than the solution-phase refolding method. The solid-phase refolded LK68 demonstrated the same Iysine binding bioactivity and the retention time in the RP-and SEC-HPLC as those of the native protein.

Monitoring of Structural Changes during in vitro Unfolding and Refolding of Recombinant Human Growth Hormone (재조함 인성장호르몬의 in vitro 풀림과 재접힘 과정의 구조변화 모니터링)

  • Cho, Tae-Hoon;Chai, Young-Kyu;Ahn, Sang-Jeom;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.651-654
    • /
    • 1999
  • Using recombinant human growth hormone as a model protein, we carried out unfolding by adding a denaturant such as urea, guanidine HCl, or SDS followed by refolding by dilution and dialysis. The objectives were to monitor the structural changes during in vitro refolding process and, based on the results, to develop a quantitative method of refolding progress assessment. The changes in surface hydrophobicity were measured by fluorescence tagging of 1-anilinonaphthalene-8-sulfonate(1,8-ANS) to the hydrophobic portions, and those in the secondary structure were monitored by using far UV-CD(circular dichroism) spectroscopy. Also, we used RP-HPLC to separate and quantify the folded and unfolded proteins to correlate the result with the structure analysis. Our results indicate the surface hydrophobicity are well correlated with the formations of the secondary structure, primarily ${\alpha}$-helices, as well as the disulfide bridges. We expect this monitoring technique can be applied in industrial fields as a means to quantitatively assess the progress of in-vitro refolding of recombinant proteins.

  • PDF

Solid-Phase Refolding Technology in Recombinant Proteins Recovery: Application Examples to Various Biopharmaceutical Proteins (유전자재조합 단백질 회수 공정에서의 고체상 재접힘 기술: 여러 바이오의약 단백질에의 적용 사례)

  • Kim, Min Young;Suh, Chang Woo;Kim, Chang Sung;Jo, Tae Hoon;Park, Sang Joong;Choi, Won Chan;Lee, Eun Kyu
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-201
    • /
    • 2005
  • Bioprocessing technologies utilizing 'biorecognition' between a solid matrix and a protein is being widely experimented as a means to replacing the conventional, solution-based technology. Frequently the matrices are chromatographic resins with specific functional groups exposed outside. Since the reactions of and interactions with the proteins occur as they are attached to the solid matrix, this 'solid-phase' processing has distinct advantages over the solution-phase technology. Solid-phase refolding of inclusion body proteins uses ion exchange resins to adsorb denaturant-dissolved inclusion body. As the denaturant is slowly removed from the micromoiety around the protein, it is refolded into a native, three-dimensional structure. Once the refolding is complete, the folded protein can be eluted by a conventional elution technique such as the salt-gradient. This concept was successfully extended to 'EBA (expanded bed adsorption)-mediated refolding,' in which the denaturant-dissolved inclusion body in whole cell homogenate is adsorbed to a Streamline resin while cell debris and other impurity proteins are removed by the EBA action. The adsorbed protein follows the same refolding steps. This solid-phase refolding process shows the potential to improve the refolding yield, reduce the number of processing steps and the processing volume and time, and thus improve the overall process economics significantly. In this paper, the experimental results of the solid-phase refolding technology applied to several biopharmaceutical proteins of various types are presented.

In-Vitro Refolding of PEGylated Lipase (PEGylation된 Lipase의 In-Vitro 재접힘)

  • Kim, Min-Young;Kwon, Jin-Sook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.338-340
    • /
    • 2005
  • Covalent modification of a protein with polyethylene glycol (PEG) has become one of the most widely used and well established drug enhancement strategies in the biopharmaceutical industry. The general benefits enjoyed by PEGylation, such as prolonged serum half-lives or reduced immunogenicity in vivo, are well known. By now the PEGylation process has been performed with purified proteins, and it is required to recover the desired PEGylate by a multi-step purification process. The ultimate aim of our research is to develop an integrated process of PEGylation and in vitro refolding starting with inclusion body material. For this, we investigated the feasibility that a protein could be PEGylated under a denaturing condition and also the PEGylated proteins could be refolded correctly. Using lipase as a model protein, we found that it was PEGylated in the presence of 8M urea and that the PEG molecules covalently attached to lipase did not appear to hinder its refolding.

융합 페리틴의 요소 농도에 따른 재접힘 특성에 관한 연구

  • Kim, Hyeong-Won;Sin, Mi-Yeong;An, Eun-Gyeong;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.480-483
    • /
    • 2003
  • Fusion ferritin$(F_H+F_L)$, an iron-binding protein, was purified from recombinant E. coli by two-step sonications with urea. Unfolded ferritin was refolded by gel filtration chromatography with various concentration of urea. 50 mM Tris-HCl(pH 8.0) buffers with 1 M to 4 M urea were used in GFC. Objective was to characterize the structure change with urea concentration. Molecular weight was determined using GF-HPLC and RP-HPLC was used to quantify the unfolded and refolded proteins.

  • PDF

고정화된 enterokinase의 풀림과 재접힘 공정을 통한 효소 활성회복기법

  • Na, Se-Jin;Seo, Chang-U;Park, Sin-Hye;Lee, Eun-Gyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.513-516
    • /
    • 2003
  • 고체상 풀림과 재접힘 공정을 통해서 EK의 활성이 회복되어지는 것을 확인할 수 있었다. 이는 고정화 효소를 사용함으로써 기존의 액상반응에서 불가능한 효소의 재사용 문제를 해결할 수 있다. 친화도보다는 다중 공유결합을 통한 효소의 고정화가 효소의 활성 회복에 높은 안정성을 가질 수 있다고 예상한다.

  • PDF

In Vitro Refolding of Inclusion Body Proteins Directly from E. coli Cell Homogenate in Expanded Bed Adsorption Chromatography (Expanded Bed Adsorption 크로마토그래피를 사용하여 재조합 E. coli 세포 파쇄액으로부터 내포체 단백질을 직접 재접힘하는 공정)

  • 조태훈;서창우;이은규
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • To avoid the intrinsic problem of aggregation associated with the traditional solution-phase refolding process, we propose a solid-phase refolding method integrated with expanded bed adsorption chromatography. The model protein used was a fusion protein of recombinant human growth hormone and a glutathione S transferase fragment. It was demonstrated that the EBA-mediated refolding technique could simultaneously remove cellular debris and directly renature the fusion protein inclusion bodies in the cell homogenate with much higher yields and less agregation. To demonstrate the applicability of the method, we successfully tested the three representative types of starting materials, i. e., rhGH monomer, washed inclusion bodies, and the E. coli homogenate. This direct and simplified refolding process could also reduce the number of renaturation steps required and allow refolding at a higher concentration, at approximately 2 mg fusion protein per ml of resin. To the best of our knowledge, it is the first approach that has combined the solid-phase refolding method with expanded bed chromatography.

  • PDF

Effect of temperature and denaturation conditions on protein folding assisted by GroEL-GroES chaperonin (GroEL-GroES 샤페로닌에 의한 단백질 접힘에 있어서 온도와 변성조건의 영향)

  • Bae, Yu-Jin;Jang, Kyoung-Jin;Jeon, Sung-Jong;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Man;Kim, Dong-Eun
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.211-217
    • /
    • 2007
  • The goal of this study is to investigate effects of temperature and co-chaperonin requirement for in vitro protein refolding assisted by E. coli chaperone GroEL under permissive and nonpermissive temperature conditions. In vitro protein refolding of two denatured proteins was kinetically investigated under several conditions in the presence of GroEL. Effects of temperature and GroES-requirement on the process of prevention of protein aggregation and refolding of denatured protein were extensively monitored. We have found that E. coli GroEL chaperone system along with ATP is required for invitro refolding of unfolded polypeptide under nonpermissive temperature of $37^{\circ}C$. However, under permissive condition spontaneous refolding can occur due to lower temperature, which can competes with chaperone-mediated protein refolding via GroEL chaperone system. Thus, GroEL seemed to divert spontaneous refolding pathway of unfolded polypeptide toward chaperone-assisted refolding pathway, which is more efficient protein refolding pathway.