• Title/Summary/Keyword: 재접착

Search Result 438, Processing Time 0.024 seconds

Study on the Effect of Contact Angles of Elastic Rubber Impression Materials on the Surface of Working Cast (탄성 고무인상재의 접촉각이 작업모형 표면에 미치는 영향)

  • Kim, Joo-Won
    • Journal of dental hygiene science
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • This study was begun to search effect of contact angles of elastic rubber impression materials on the surface of working cast. Of elastic rubber impression materials with a Type III consistency, such as polysulfide, polyether and addition silicone, we selected one and then measured the contact angle after dripping a distilled water 3.3ml. Then, after pouring a dental anhydrite in three types of impression materials, we prepared a working cast and then examined its surface. Contact angle was measured using a full automatic contact angle measuring system (DM-700, KYOWA, Japan), and the surface of working cast was observed using a field emission scanning electron microscope (JSM-6700F, JEOL Ltd., JAPAN). The following results were obtained: 1) $Mean{\pm}SD$ (SD: standard deviation) of the initial contact angles were $91.3{\pm}20.5^{\circ}$ in the addition silicone materials, $90.0{\pm}2.2^{\circ}$ in the polyethers and $101.5{\pm}2.3^{\circ}$ in the polysulfides. These results indicate that mean values were similar but standard deviations of the three materials showed a great discrepancy. 2) As the time elapsed, addition silicone materials were found to have a contact angle decreased abruptly as compared with the remaining two types. That is, the initial contact angle was $91.3^{\circ}$ and it was abruptly decreased to $29.4^{\circ}$ after 25 seconds. 3) In the polyethers, the initial contact angle was $101.5^{\circ}$ and it was decreased to $90.7^{\circ}$ after 25 seconds. In the polysulfides, however, the initial contact angle was $90.0^{\circ}$ and it was $84.2^{\circ}$ after 25 seconds. This showed almost no changes in the initial contact angles. Moreover, its magnitude was greater than that seen in additional silicones. 4) There were significant differences in the contact angles between the three types of elastic rubber impression materials as the time elapsed (p<0.001). On an observation on the surface of working cast, addition silicone materials were found to have the most dense surface. This was followed by polysulfides and polyethers in a descending order.

A Study of the Dried-lacquer Amitabha Buddha Statue from Simhyangsa Temple (심향사 극락전 협저 아미타불의 제작기법에 관한 연구)

  • Jeong, Ji-Yeon;Motoya, Myochin
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.134-151
    • /
    • 2014
  • This paper deals with a review of the structure and production techniques of the Dried-lacquer Amitabha Buddha statue enshrined in Geungnakjeon Hall of Simhyangsa Temple, located in Daeho-dong, Naju-si, Jeollanam-do, Korea. To achieve this goal, X-ray date and two rounds of field research were performed. The data collected were reviewed, and a sample peeled off from the damaged part was analyzed to investigate the structure and material of the background layer. The results revealed that the Simhyangsa Temple Buddha statue was an almost empty Dried-lacquer(Hyeopjeo) Buddha statue where wood core had not been framed and inserted in the statue. It was thus observed that considering that the clothes wrinkles clearly remained, the same one as the irregularity of the outer clothes wrinkles, the Dried-lacquer layer was lifted made in an almost complete shape in the process of forming the clay figure as the origin form. The statue was found to be diagonally incised from the top of the head to the back of the neck to remove the clay and wood core. But in other sites, no incision was confirmed. It was observed that on the site of the head where the incision was made, an adhesives(lacquer or paste) was used. In addition, the black eyes were impacted with beads and the ears, hands, bands, and knots were made of wood. These features are identically shown in the Dried-lacquer Amitabha Buddha statue from Seonguksa Temple, known as a work of the late Goryeo dynasty; the Seated Dried-lacquer Buddha statue in Okura Museum of Art in Tokyo, Japan; the Seated Dried-lacquer Amitabha Buddha statue from Jungnimsa Temple, know as a work of the early Joseon dynasty; and the Seated Vairocana Buddha statue in Bulhoesa Temple, the Seated Dried-lacquer Amitabha Buddha and the Seated Dried-lacquer Buddha statue from Silsangsa Temple. The analysis of the back layer demonstrated that the ground layer and the red lacquer were the production of the time. In particular, the bone ash used for the ground layer was also coated for the ground layer of Buddha statues as well as for the production of the lacquerware during the Goryeo dynasty. It was also found that gold mending was conducted more than twice even in modern times and that the layer of the production time was well preserved despite gold mending several times.

Study on Material Characteristics and Conservation Methods for Tracksite of Cretaceous Dinosaurs and Pterosaurs of Jeongchon area in Jinju, Korea (진주 정촌면 백악기 공룡·익룡발자국 화석산지의 재질특성 및 보존 방안 연구)

  • Ji Hyun Yoo;Yu Bin Ahn;Myoung Nam Kim;Myeong Seong Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.697-714
    • /
    • 2023
  • The Tracksite of Cretaceous Dinosaurs and Pterosaurs in Jeongchon, Jinju was discovered in late 2017 during the construction of the Ppuri industry complex. This site is a natural heritage site with a high paleontological value, as it preserves fossils of various types of dinosaurs, pterosaurs, and animal traces at a dense concentration. In this study, we surveyed that physical weathering such as joint, crack, scaling, exfoliation, and fragmentation occurred through field research in the fossil site, and conducted basic research on conservation science to reduce the damage. To this end, among the eight levels identified after excavation, the rocks of Level 3, which yielded a large number of theropod footprint fossils, and Level 4, which yielded pterosaur footprint fossils, were analyzed for material characteristics and evaluation of the effectiveness of consolidation and adhesion. This results showed that the rocks in the Level 3 stratum were dark gray siltstone and the rocks in the Level 4 stratum were dark gray shale, which contained a large amount of calcite and were composed of quartz, plagioclase, mica, alkali feldspar, and other clay minerals, which are likely to be damaged by rainfall under external conditions. As a result of conducting an artificial weathering experiment by dividing the probationary sample into four groups: untreated, consolidation treatment, anti-swelling treatment, and adhesive treatment, the consolidation and the swelling inhibitor showed an effect immediately after treatment, but did not show a blocking effect under a freezing-thawing environment. The adhesive showed that the adhesive effect was maintained even under freezing-thawing conditions. In order to preserve the fossil sites at Jeongchon in the future, in addition to temporary measures to block the inflow of moisture, practical measures such as the construction of protective facilities should be prepared.

AN EXPERIMENTAL STUDY ON THE TENSILE STRENGTH OF POSTERIOR RESIN-BASED COMPOSITES (구치부 복합레진의 인장강도에 관한 실험적 연구)

  • Kim, Jae-Gon;Lee, Yong-Hee;Yang, Cheol-Hee;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.464-470
    • /
    • 2001
  • The purpose of this study was to evaluate the tensile strength of light-cured restorative posterior resin-based composites. Five commercially available light-cured composites(Denfil : DF, P60 : PS, Unifil S : US, Z100 : ZH, Z250 : ZT) were used. Rectangular tension test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. Specimens were subjected to the 5,000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$ and the immersion time in each bath was 15 second per cycle. Tensile testing was carried out with Instron at a crosshead speed of 0.5mm/min and fractured surface were observed with scanning electron microscope. The obtained results were summarized as follows; 1. The tensile strength of PS was highest. PS was significantly higher than DF, US and ZH(p<0.05) but in the case of ZT was similar to PS(p>0.05). 2. The tensile strength DF was lowest. DF was significantly lower than PS, US, ZH and ZT(p<0.05). 3. The tensile strength of US and ZH were significantly lower than PS and ZT(p<0.05). but were significantly higher than DF(p<0.05). The tensile strength of US and ZH were similar(p>0.05).

  • PDF

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

Development and Application of Okara-based Adhesives for Plywood Panels (두부비지를 이용한 합판용 접착제의 개발 및 적용)

  • Oh, Sei-Chang;Ahn, Sye-Hee;Choi, In-Gyu;Jeong, Han-Seob;Yoon, Young-Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.30-38
    • /
    • 2008
  • Petroleum-based resin adhesives have extensively been used for the production of wood panels. However, with the increase of manufacturing cost and the environmental issue, such as the emission of volatile organic compounds, of the adhesive resins, it is necessary to be developed new adhesive systems. In this study, the potential of okara, which is a residue wasted from the production of tofu, for the development of bio-based adhesives was investigated. At first, the physical and chemical properties of okara were examined. After okara was hydrolyzed in acidic and/or alkaline solutions, okara-based adhesive resins were formulated with the mixtures of the okara hydrolyzates and phenol formaldehyde (PF) prepolymer. The adhesive resins were used for the fabrication of plywood panels, and then the adhesive strength and formaldehyde emission of the plywood panels were measured to examine the applicability of the resin adhesives for the production of plywood panels. The solids content and pH of the okara used in this study were around 20% and weak acidic state, respectively. In the analysis of its chemical composition, the content of carbohydrate was the highest, and followed by protein. The shear strengths of plywood fabricated with okara-based resin adhesives exceeded a minimum requirement of KS standard for ordinary plywood, but its wood failure did not reach the minimum requirement. In addition, the formaldehyde emissions of all plywood panels were higher than that of E1 specified in the KS standard. Based on these results, okara has the potential to be used as a raw material of environmentally friendly adhesive resin systems for the production of wood panels, but further researches - biological hydrolysis of okara and various formulations of PF prepolymer - are required to improve the adhesive strength and formaldehyde emission of okara-based resin adhesives.

MICROLEAKAGE OF THE EXPERIMENTAL COMPOSITE RESIN WITH THREE COMPONENT PHOTOINITIATOR SYSTEMS (3종 광중합개시제를 함유한 실험용 복합레진의 미세누출도)

  • Kim, Ji-Hoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • This study was done to determine if there is any difference in microleakage between experimental composite resins, in which various proportions of three component photoinitiators (Camphoroquinone, OPPI, Amine) were included. Four kinds of experimental composite resin were made by mixing 3.2% silanated barium glass (78 wt.%, average size; 1 ${\mu}m$) with each monomer system including variously proportioned photoinitiator systems used for photoinitiating BisGMA/BisEMA/TEGDMA monomer blend (37.5:37.5:25 wt.%). The weight percentage of each component were as follows (in sequence Camphoroquinone, OPPI, Amine): Group A - 0.5%, 0%, 1% / Group B - 2%, 0.2%, 2% / Group C - 0.2%, 1%, 0.2% / Group D - 1%, 1%, 2%. Each composite resin was used as a filling material for round class V cavities (diameter: 2/3 of mesiodistal width; depth: 1.5 mm) made on extracted human premolars and they were polymerized using curing light unit (XL 2500, 3M ESPE) for 40 s with an intensity of 600 mW/$cm^2$. Teeth were thermocycled fivehundred times between $50^{\circ}C$and $550^{\circ}C$for 30s at each temperature. Electrical conductivity (${\mu}A$) was recorded two times (just after thermocycling and after three-month storage in saline solution) by electrochemical method. Microleakage scores of each group according to evaluation time were as follows [Group: at first record / at second record; unit (${\mu}A$)]: A: 3.80 (0.69) / 13.22 (4.48), B: 3.42 (1.33) / 18.84 (5.53), C: 4.18 (2.55) / 28.08 (7.75), D: 4.12 (1.86) / 7.41 (3.41). Just after thermocycling, there was no difference in microleakage between groups, however, group C showed the largest score after three-month storage. Although there seems to be no difference in microleakage between groups just after thermocycling, composite resin with highly concentrated initiation system or classical design (Camphoroquinone and Amine system) would be more desirable for minimizing microleakage after three-month storage.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Reaction Mechanism and Curing Characteristics of Chicken Feather-Based Adhesives and Adhesive Properties of Medium-Density Fiberboard Bonded with the Adhesive Resins (닭털로 제조한 접착제의 반응기작 및 경화 특성과 이를 이용하여 제조한 중밀도섬유판의 접착 특성)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.385-394
    • /
    • 2017
  • In this study, reaction mechanism and curing characteristics of adhesives formulated with NaOH- and $H_2SO_4$-hydrolyzed chicken feather (CF) and formaldehyde-based crosslinkers were investigated by FT-IR and DSC. In addition, adhesive properties and formaldehyde emission of medium-density fiberboards (MDF) applied with the adhesives were measured. CF-based adhesives having a solid content of 40% and over were very viscous at $25^{\circ}C$, but the viscosity reduced to $300{\sim}660m{\cdot}Pa{\cdot}s$ at $50^{\circ}C$. Consequently, the adhesives could be used as a sprayable resin. Through the FT-IR spectra of liquid and cured CF-based adhesives, addition reaction of methylol group and condensation reaction between the functional groups with the use of formaldehyde-based crosslinkers were identified. From the analysis of DSC, it was elucidated for CF-based adhesives to require a higher pressing temperature or longer pressing time comparing to commercial urea-formaldehyde (C-UF) resin. MDF bonded with CF-based adhesives, which was formulated with 5% NaOH-hydrolyzed CF (CF-AK-5%) and PF of formaldehyde to phenol mole ratio of 2.5 (PF-2.5), and pressed for 8 min had higher MOR and IB than those with other CF-based adhesives. MOR and IB of MDF bonded with the CF-based adhesives regardless of formulation type and pressing time were higher than those with C-UF resin. When the values compared with the minimum requirements of KS standard, IB exceeded the KS standard in all formulations and pressing time, but MOR of only MDF bonded with CF-AK-5% and PF-2.5 and pressed for 8 min satisfied the KS standard. What was worse, 24-TS of MDF bonded with all CF-based adhesives did not satisfied the KS standard. However, MOR and 24-TS can be improved by increasing the target density of MDF or the amount of wax emulsion, which is added to improve the water resistance of MDF. Importantly, the use of CF-based adhesives decreased greatly the formaldehyde emission. Based on the results, we reached the conclusion that CF-based adhesives formulated under proper conditions had a potential as a sprayable resin for the production of wood panels.

Preparation and Properties of Eco-friendly Waterborne Polyurethane-urea Primer for Thermoplastic Polypropylene Applied to Automobile Interiors (자동차 내장재용 열가소성 폴리프로필렌에 적용되는 선처리제용 친환경 수분산 폴리우레탄-우레아의 제조 및 성질)

  • Shin, Jong Sub;Park, Jin Myeong;Lee, Young Hee;Kim, Han Do
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • The significance of thermoplastic polyolefin polypropylene (PP) lies in its potential to replace polyvinyl chloride (PVC), the most widely used material for automobile interiors (door trim, dash board), which discharges harmful compounds in certain conditions. Another benefit of PP (0.855 amorphous - 0.946 crystalline $g/cm^3$) is its low density compared to that of PVC ($1.1-1.45g/cm^3$), which reduces vehicle weight. Market demand for eco-friendly water-based adhesive/coating material is rising significantly as a substitute for solvent-based adhesive/coating material which emits VOC and causes harmful working conditions. Under such context, in this study, a series of eco-friendly waterborne polyurethane-urea primer (a paint product that allows finishing paint to adhere much better than if it were used alone) for hydrophobic PP were prepared from different mix of DMPA content, NCO/OH molar ratio, various wt% of silicone diol and various soft segment content, among which DMPA of 21 mole %, NCO/OH molar ratio of 1.2, modified silicone diol of 5 wt% and soft segment content of 73 wt% led to good adhesion strength. Additionally, the incorporation of optimum content of additives (0.5 wt% dispersing agent, 0.5 wt% levelling agent, 1.5 wt% antifoaming agent, 3.0 wt% matting agent) into the optimum waterborne polyurethane-urea also enabled good stability, levelling, antifoaming and non-glossy.