• Title/Summary/Keyword: 재용출

Search Result 324, Processing Time 0.022 seconds

Suitability of Migration Testing for Food Packaging Materials Using Tenax® (Tenax®를 이용한 식품포장재의 용출 실험의 적합성)

  • Kim, Hyeong-Jun;Bang, Dae Young;Kim, Min Ho;Lee, Keun Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • This study aimed at examining the suitability of $Tenax^{(R)}$ for the migration testing of food packaging materials, which is currently approved in the EU as a dry food simulant. The results are used as a basis to examine the feasibility of introducing $Tenax^{(R)}$ to Korean regulation. The OMVs of test specimen into various solvents (diethyl ether, ethanol, pentane, and acetone) after exposure to $100^{\circ}C$ for 1 hr were compared. Diethyl ether showed the highest OMV ($1.33mg/dm^2$) among the solvents tested. When the tests were conducted with different amounts of $Tenax^{(R)}$ of 2, 4, or 8 g per specimen, the OMVs were 0.75, 1.33 and $1.40mg/dm^2$, respectively. The OMV obtained with a closed system after wrapping with aluminum foil showed a significantly higher OMV ($1.61mg/dm^2$) than that without aluminum wrapping ($1.318mg/dm^2w$) and an open system without lid ($1.06mg/dm^2$). The specific migration rates of surrogates spiked in the polyethylene test film and paper samples into $Tenax^{(R)}$ were compared with those into liquid food simulants including 95% ethanol and n-heptane, and actual foods such as starch, skim milk, and sugar. In general, the specific migration levels of surrogates into $Tenax^{(R)}$ were similar compared with n-heptane, however those were significantly higher than into actual foods. These results suggest that $Tenax^{(R)}$ may be used as a food simulant for the long-term preservation of dried foods and paper products. However, more studies need to be conducted to investigate the factors influencing the migration into $Tenax^{(R)}$, such as the types of foods and packaging materials tested, migration conditions, and surrogates properties etc.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

Studies on Fine Spirits Aging [Part I]-On the Aptitude of the Korean Oak Varieties as Barrels for Aging Apple Fine Spirits- (증류주(蒸溜酒) 숙성(熟成)에 관(關)한 연구(硏究) 제1보[第一報]-사과 증류주(蒸溜酒) 숙성(熟成)에 있어서 숙성통재(熟成桶材)로서 한국산(韓國産) 참나무 품종별(品種別) 이용적성(利用適性)에 관(關)하여-)

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.66-80
    • /
    • 1977
  • This research was carried as a part of the basic study, in which the aptitude of theKorean oak varieties as barrels for aging apple fine spirits was investigated, and thefollowing results were obtained. 1. Following was the result of the chemical analysis of the fruits which are now mass-produced and can be used as a substitute for raw materials for wine production. Apple (Malus pumila Miller var. domestica Schneider) : Total sugar. total acid, volatile acid and pectin of Jonathan (Hong-og) were 13.95%, 0.46%, 0.012%, 0.20% respectively. Total sugar, total acid, volatile acid and pectin of Ralls (Koog-kwang) were 13.35%, 0.43%, 0.011%, 0.45% respectively. 2. Because of low yield of apple juice due to cellulose, pectin, hemicellulose which are present besides sugars, acids in apples, the apple juice were treated with xylanase of Aspergillus niger SUAFM-430, cellulase and pectinase of Aspergillus niger SUAFM-6. This treatment increased the yield of apple juice. And the apple juice was sterilized by adding potassium metabisulfite $(K_2S_20_5)$ and Saccharomyces cerevisae var. ellipsoideus Rasse Johannisberg II (SUAFM-1018) as a cultivation yeast, which has a strong fermentation power was used to ferment. The yield of apple wine based on raw material was 86-87%. The amount of ethanol, extract and methanol obtained from Jonathan and Ralls were 13.5%, 5.4%, 0.04-0.05% respectively. 3. Wines were distilled for two times by the pot still method to make fine spirits. The yield of fine spirits from apple wine mash was 86.6%, and the pH of fine spirits from Jonathan and Ralls were 4.1, 4.2 respectively. 4. The oak chips made of inner part or outer part of 24 Korean oak varieties were used to select the barrel for aging fine spirits. Two oak chips (one oak chip: $1{\times}1{\times}5cm$) of the inner part or of the outer part of each oak variety were dipped into 300 ml of fine spirits, which was bottled in 640ml beer bottle, and followed aging. The colors, flavors and tastes of the fine spirits were checked during 6 months. A. As a criterion for the first screening of oak barrels for aging fine spirits, the rate five of color extraction was determined. The oak chips showed good results in their order as follows and the best 5 varieties were selected. Gal-cham: Quercus aliena Blume (Inner part), Gul-cham: Quercus variabilis Blume (Outer part), Gal-chain: Quercus aliena Blume (Outer part), Jol-cham: Quercus serrata Thumb (Inner and Outer part). Sin-gal-cham: Quercus mongolica Fisher (Outer and Inner part) Sang-su-ri: Quercus acutissima Carruthers (Outer and Inner part) B. To find out the influence of aging temperature on aging, apple fine spirits were aged by dipping each oak chip at room temperature $(24-25^{\circ}C)$) and $45^{\circ}C$. Aging at $45^{\circ}C$ gave the best result followed aging at $30^{\circ}C$ and then at room temperature. C. Apple fine spirits was aged for six months by dipping oak chips in Erlenmeyer flasks and was irradiated with U.V light. The U.V irradiation enhanced the aging effect by nearly two times, compared with the aging without U.V irradiation. D. In aging apple fine spirits by dipping two oak chips, it was observed that the extent of the extraction of most components of oak chips were strongly dependent upon the pH of fine spirits. E. Oak chips of five selected oak varieties and a Limousin white oak from France as a control were used. Each apple fine spitits was dipped by two oak chips, and was aged at room temperature $(24-25^{\circ}C)$, $30^{\circ}C$, $45^{\circ}C$, and with the U.V irradiation at room temperature shaking every week. After six months of aging, the panel test of these aged fine spirits (Young Brandy) showed the following result. Young brandy of apples aged at $45^{\circ}C$ by dipping oak chips of Gal-chain was almost as the fine spirits which were aged at room temperature by dipping Limousin white oak chips from France. Young brandy of with U.V. irradiation at room temperature which were aged by dipping oak chips of Gal-chain was a little worse than that from the fine spirits aged at room temperature by dipping Limousin white oak chips from France. And so, Korean oak varieties are thought to be able to be used for aging every apple fine spirit which was here investigated.

  • PDF