• 제목/요약/키워드: 재순환 이젝터

검색결과 12건 처리시간 0.024초

연료전지 이젝터 시스템에 관한 수치해석적 연구 (A Computational Study of the Fuel-Cell Ejector System)

  • 이준희;이해동;남궁혁준;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

SOFC 산화전극 배기가스 순환 시스템을 위한 이젝터 최적 설계 (Ejector Optimization for SOFC Anode Off-Gas Recirculation System)

  • 조성종
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.139-148
    • /
    • 2013
  • 본 연구에서는 1kW 급 SOFC 시스템의 AOGR(anode off-gas recirculation)을 위한 이젝터를 설계하고 이젝터 적용시의 시스템 효율을 매개변수 연구를 통해 알아보았다. 화공해석 프로그램를 이용하여 이젝터의 작동 조건을 계산하였고, 전역 최적값을 보장하면서도 CFD 계산에 따른 부하를 최소화하기 위하여 유전 알고리듬과 크리깅 모델을 이용하여 최적화를 진행하였다. 최적화를 통해 음속 이젝터에서 가장 큰 영향을 미치는 설계 변수가 이젝터의 목직경과 1 차 노즐의 위치임을 식별하였다. 유동변수에 대한 매개변수 연구를 통해 설계된 이젝터는 1kW 급 SOFC 의 다양한 작동 조건에서 충분한 유연성을 가지며, SOFC 에 적용시 증기의 56% 와 연료의 8.4% 절감이 가능함을 보였다.

이차원 초음속 이젝터 유동에 대한 수치해석적 연구 (Numerical Study of Two-Dimensional Supersonic Ejector Flows)

  • 김희동;이영기;서태원
    • 한국추진공학회지
    • /
    • 제2권1호
    • /
    • pp.1-12
    • /
    • 1998
  • 본 연구에서는 기존에 수행되었던 초음속 이젝터에 대한 실험적 연구 및 수치계산 결과에 대한 타당성을 검증하고, 이젝터 유동을 보다 명확히 해석하기 위하여 이젝터 목을 가지는 초음속 이젝터 유동 장에 대하여 k-$\varepsilon$ 난류모델을 적용하였다. 수치계산은 3~200까지의 매우 넓은 범위의 이젝터 작동 압력비에 대하여 수행되었으며, 수치계산 결과들은 이젝터 내부의 유동특성들을 조사하는데 이용되었다. 계산결과, 이젝터 압력비가 6 이상인 경우 이젝터 내부에서 발생하는 유동장은 이젝터 압력비에 크게 의존하지 않는다는 것을 알았다. 본 연구에서 사용된 단순 형태의 초음속 이젝터에 대하여, 2차 정체실의 압력은 이젝터 압력비가 6인 경우에 약 7k㎩로 최소로 되었다. 그러나 이젝터 압력비가 6이상으로 증가하는 경우 2차 정체실의 압력은 증가하는 것으로 나타났다. 이와 같은 2차 정체실의 압력증가는 1차 노즐로부터 방출되는 부족팽창 제트유동이 이젝터 벽면에 충돌함으로써 발생하는 재순환 유동으로 설명할 수 있었다.

  • PDF

연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구 (Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

연료전지 수소재순환 이젝터 성능 해석 (Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

5kW 용융탄산염 연료전지 이젝터 설계 및 시험 (The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell)

  • 김범주;김도형;이정현;정상천;이성윤;강승원;임희천
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2008
  • An ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The Ejector is applied for a variety of industrial fields such as refrigerators and power plants. It is adopted to recycle anode off gas safely in 5kW Molten Carbonate Fuel Cell system of KEPRI(Korea Electric Power Research Institute). The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat. In addition, the performance curve of the ejector and the differential pressure in diffuser is observed.

  • PDF

고습의 흡입 유체일 때 이젝터의 성능 변화 (Humidity Effect on the Hydrogen Re-circulation Ejector Performance)

  • 제갈승;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

수소 연료전지차의 재순환시스템 모델링 연구 (Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle)

  • 김재훈;노용규;전의식;이종현
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

75kW급 연료전지 시스템의 이젝터 설계 및 시험 (The Design and Test of Ejectors for a 75-kW Fuel Cell System)

  • 김범주;김도형;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.678-685
    • /
    • 2011
  • An Ejector enhances system efficiency, are easily operated, have a mechanically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 75-kW Molten Carbonate Fuel Cell (MCFC) system at KEPCO Research Institute. In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In the first place, a few sample ejectors were manufacured and the entrainment ratio was measured at a dummy stack. Through this experiment, the optimum ejector was chosen. The 75-kW MCFC system equipped with this optimum ejector was operated successfully.

5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험 (The Ejector Design and Test for 5kW MCFC System)

  • 김범주;김도형;이정현;이성윤;김진열;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.