• Title/Summary/Keyword: 재생콘크리트

Search Result 344, Processing Time 0.03 seconds

Characteristics of Strength and Fracture Toughness of Recycled Aggregate Concrete (재생골재 콘크리트의 강도 및 파괴특성 실험)

  • Kim, Jin-Cheol;Yang, Sung-Chul;Cho, Yoon-Ho;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.37-45
    • /
    • 2004
  • The characteristics of concrete strength and fracture parameters of recycled aggregate concrete were investigated to apply to the concrete pavements. As the results, the early strength of recycled aggregate concrete showed to be lower than that of natural coarse aggregate concrete, whereas strength at 28 days showed to be similar. Young's modulus of recycled aggregate concrete was lower than that of natural coarse aggregate concrete due to the difference of aggregate strength. And recycled aggregate concrete contained with ground granulated blast furnace slag seemed to have an effect of strength increasing. The critical stress intensity factor of recycled aggregate concrete at the early age was increased, and converged to be similar, compared to natural aggregate concrete at later age. The reliability of two-parameter fracture model was identified by the good correlation between the theoretical value computed by P-CMOD relationship and experimental results for Young's modulus and tensile strength.

  • PDF

Mechanical Characteristics of Recycled Concrete as a Pavement Material for Low-Volume Road (소 도로포장 재료로서 재생콘크리트의 역학적 특성)

  • 김광우;류능환;박용철
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.171-178
    • /
    • 1996
  • This study evaluated mechanical characteristics and performance of recycled concrete as a pavement material for use in low volume road. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled coarse aggregate. Natural sand from a source was used as fine aggregate together with admixtures, such as plasticizer and fly ash (0.8% and 5% by wt. of total binder, respectively). From experimental evaluation. it was found that flexural strength. compressive strength, elastic modulus and fracture toughness of recycled concrete at 28 days were approximately $45kg/cm^2$, $250kg/cm^2$, $230,000kg/cm^2$$0.863 MPa{\cdot}m^{1/2}$. respectively. Long term strength and fracture toughness were improved significantly at the age of 6 months. In conclusion. mechanical properties of the recycled concrete were acceptable for use as concrete pavement materials in low-volume roads in rural and urban areas.

Freeze and Thaw Durability of Concrete Using Recycled Aggregates (재생골재를 사용한 콘크리트의 동결융해 저항성)

  • 문대중;팽우선;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.307-314
    • /
    • 2002
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituting for insufficient natural aggregate, saving resources and protecting environment. There, however, are some Problems not only the large difference of dualities in recycled aggregates but also a little deterioration of mechanical properties in recycled aggregate concrete in comparison with that of natural aggregate concrete. In this study, the test results of freez and thaw durability of concrete with demolished-concrete recycled aggregate(DRA) arc as follows. Improvement of crushing process is an important assignment because that adhered mortar on source-concrete recycled aggregate(SRA) and DRA highly affects thc qualifies of recycled aggregate. The compressive strength of recycled aggregate concrete was not highly different in comparison with that of control concrete. But the resistance to penetration of Cl in recycled aggregate concrete was shown smaller than that of control concrete because of adhered mortar on recycled aggregate. The resistance to frcezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA-SRA and DRA was more decreased than that of control concrete. On the other hand, durability factor of concrete with AA-SRA was larger than that of control concrete. It, therefore, is necessarily required that recycled aggregate including adequate entrained air should be used for satisfying the freez and thaw durability of recycled aggregate concrete.

Basic Experimental Properties of Concrete using Waste Concrete as Aggregate (骨材로써 廢콘크리트를 사용한 콘크리트의 基本的인 實驗 特性)

  • 구봉근;나재웅;신재인;박재성
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.16-24
    • /
    • 2001
  • In this study, various mechanical properties of concretes employing waste concrete as aggregate were examined. These concretes were obtained by mixing seven types of aggregate for different ratios. So, the experimental variables are the kinds of aggregates (some different aggregate compositions) and W/C ratio (0.40, 0.45, 0.50). From experimental results, the reliable regression analysis equations between compressive strength and various experimental data for recycled aggregate concrete are presented. Consequently, this study was accomplished to investigate basic engineering properties of recycled aggregate concrete using waste concrete.

  • PDF

A Study on the Sound Absolution Properties of Porous Concrete by Recycled Aggregate Contents and Target Void Ratio (재생골재의 혼입률과 목표공극률에 따른 포러스콘크리트의 흡음특성에 관한 연구)

  • Park Seung-Bum;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.541-548
    • /
    • 2004
  • This study peformed an evaluation of the physical and mechanical properties and sound absorption characteristics of porous concrete according to the target void ratio and content of the recycled aggregate in order to reduce the noise generated in roads, railroads, residential areas and downtown areas and effectively utilize the recycled waste concrete aggregate generated as a byproduct of construction. The test results demonstrated that the difference between the target void ratio and the actual measured void ratio was less than 1.7% and that the tendency of the compression strength was to reduce rapidly when the target void ratio and the content of the recycled aggregate exceeded 25% and 50%, respectively. In addition, the sound absorption characteristics of the porous concrete using recycled waste concrete aggregate showed that the NRC was the highest at the target void ratio of 25% and the content of the recycled aggregate had very little influence on the NRC. Therefore, when considering the compression strength and the sound absorption characteristics of porous concrete, the proper target void ratio and the content of the recycled waste concrete aggregate are thought to be 25% and 50%, respectively

Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials (도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구)

  • Kim, Kwang-Woo;Ryu, Neung-Hwan;Doh, Young-Soo;Li, Xiang-Fan
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.103-112
    • /
    • 2001
  • This study was performed to evaluate applicability of recycled aggregates as subbase and surface concrete materials for cement concrete pavement. Laboratory compaction test, CBR test and plate load bearing test were conducted to evaluate applicability for pavement subbase materials. Recycled concrete for surface course was manufactured with a design strength of $280kgf/cm^2$. Normal coarse aggregate was substituted with recycled aggregates with five different ratios, 0%, 20%, 40%, 60% and 80% for recycled concrete mixes. Fresh concrete Properties, concrete strength properties for the five substitution percentages of recycled aggregates after 28-day curing and freezing-and-thawing resistance were evaluated experimentally. Based on the experimental results, it was concluded that the recycled aggregate was the material good enough to use for subbase material, and 40% or lower substitution ratio was an appropriate percentage of recycled aggregates replacement for surface concrete.

  • PDF

물-시멘트비에 따른 굳은 재생콘크리트의 특성

  • 구봉근;김태봉;신재인;박재성;김정회
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.321-326
    • /
    • 1998
  • 폐콘크리트양은 건설폐기물 발생량의 약 50%정도인 연간 약 500만톤 이상으로 추정하고 있다. 따라서, 건설폐기물인 폐콘크리트에 대한 적절한 기술적 처리와 재활용 시스템이 구축된다면 도로포장 및 기타 포장 하층노반재료, 재생 입도조정쇄석, 건축물의 기초재, 토목 구조물의 기초재, 공작물의 되메우기 재료 등으로 활용될 수 있어 폐기되어버릴 단순한 쓰레기가 아니라 오히려 재활용 용도를 적극 개발하여야 할 중요한 자원이라고 볼 수 있다. 본 연구의 목적은 여러가지 건설 폐기물 중에서도 재활용 가능성이 높으며 구조물 해체시 다량으로 얻어지는 폐콘크리트를 대상으로 건설공사에 재이용하기 위해 폐콘크리트 골재를 사용한 재생콘크리트의 공학적 특성을 실험을 통해 검토하고자 하는 것이다. (중략)

  • PDF

An Experimental Study on the Durability of Recycled Aggregate Concrete (재생골재 콘크리트의 내구특성에 관한 실험적 연구)

  • Seo Chi-Ho;Kim Byung-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.385-392
    • /
    • 2005
  • The object of this study is to prove the quality and reliability of recycled aggregate concrete by finding a way to improve the durability of the material through the experiment on the accelerated carbonation, freezing and thaw, and drying shrinkage, analysing the influence on the durability to Promote more active use of recycled aggregate concrete. The result of study as follows. (1) Resistibility to the freeze and thaw of the recycled aggregate concrete showed relative dynamic modulus of elasticity over $90\%$ which is very good, and all cycles show $99.2{\~}91.0\%$ dynamic modulus of elasticity which is improved compared with the $97.5{\~}90.6\%$ relative dynamic modulus of elasticity of ordinary concrete made of broken stone. (2) Carbonated thickness of the recycled aggregate concrete and the normal concrete was similar or it appeared with the tendency which it diminishes more or less. (3) Length change rate in drying contraction of the recycled aggregate concrete made of the recycled aggregate was lower than the ordinary concrete made of the broken stone by $18.5{\~}3.9\%$ in all blending.