• Title/Summary/Keyword: 재생모래

Search Result 28, Processing Time 0.027 seconds

Experimental research trends on Gas hydrate Production (가스 하이드레이트 생산 실험 연구 동향 분석)

  • Lee, Joo Yong;Lee, Jaehyung;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.147.2-147.2
    • /
    • 2011
  • 새로운 에너지원으로서의 가스 하이드레이트 개발 연구는 한국에서는 2005년 산업자원부에 의해 가스하이드레이트 개발 연구 사업이 정식으로 출범하면서 활발히 진행되기 시작하였다. 2007년도에 종료된 1단계 연구를 통하여 동해에서 가스 하이드레이트 부존이 확인됨에 따라 2단계에서 부터는 가스하이드레이트 생산 연구가 연구의 중심으로 떠오르게 되었다. 생산 연구는 물성/생산 실험 연구, 전산모사 연구, 해외 현장 시험 생산 연구로 크게 나뉘어 질 수 있는데 현재 한국에서는 물성/생산 실험 연구가 가장 활발히 진행되어 왔다. 이에 따라 보다 체계적이고 계획적인 연구를 위하여 기 실험된 연구를 종합 분석하여 체계적인 실험 결과의 활용과 향후 연구 계획을 하고자 한다. 본 발표에서는 기 실행된 실험 연구를 수행기관, 시료의 크기, 경계조건 등의 실험 규모, 시료의 종류, 하이드레이트 형성 조건, 측정 물성, 채택 생산 기법 등의 실험 내용 등을 종합하여 소개하고자 한다. 1단계에서는 주로 실험실 스케일, 인공 모래 시료, 인공 가스하이드레이트를 이용한 실험연구가 주를 이루었으며 이를 보완하기 위하여 2단계에서는 중규모, 자연시료, 자연 하이드레이트를 이용한 실험연구가 시작되었다. 초기 단계에서 생산 기법으로 감압법, 열수 주입법, 열자극 법, 화학 억제제 주입법, 치환 생상법 등이 연구되었으며 그 결과 감압법을 주 생산 기법으로 하여 열수 주입법, 열자극법, 화학 억제제 주입법 등을 하이드레이트 재생성 억제기법으로 혼합하여 쓰는 하이브리드 기법들이 연구 되었으며 현재 세계적인 수준의 실험 연구 기술 수준을 보유 하고 있는 치환 생산법 연구가 또한 현재까지 활발히 진행되고 있다.

  • PDF

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.

Technical Consideration of Elastic Wave Measurements of Gas Hydrate-bearing Sediments in Lab-Scale (GH 함유 퇴적물 실험실 스케일 탄성파 측정 기법의 기술적 고찰)

  • Jung, Jaewoong;Lee, Joo Yong;Lee, Jaehyung;Kim, Sejoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • 청정 에너지원으로 높은 잠재력을 가지고 있는 가스하이드레이트는 상업적 기술개발이 미확보된 상태이다. 현재 전 세계적으로 가스하이드레이트 개발 및 생산에 관한 연구가 활발히 진행되고 있으며 이에 대한 기초자료로서 가스하이드레이트가 함유된 퇴적층의 물성자료가 필요하다. 특히, 현장 시료에 대한 물성 측정은 향후 가스하이드레이트 개발 및 생산 계획을 수립하는데 있어서 매우 중요하다. 탄성파 측정 결과는 다른 물성 들에 비하여 하이드레이트 함유 시료의 성형과정에 큰 영향을 받는다. 또한 그 외의 실험 경계조건과 취득 자료의 처리 과정에도 매우 민감하게 반응한다. 따라서 측정을 하는 과정은 물론 측정 후 자료의 활용 과정에서 다양히 고려해야 할 점들이 있다. 본 연구에서는 인공 모래를 이용하여 다양한 조건에서 탄성파 속도를 측정한 후 그 결과를 토대로 하여 기존의 연구 결과와 비교하여 음파 측정연구 시 고려해야 할 기술적 사항 들을 정리해 보았다. 실험에 사용된 장비는 고압의 퇴적층을 모사할 수 있는 압력셀과 메탄과 염수 주입에 사용되는 유체 주입장비, 하이드레이트 형성을 위한 온도조절장비, 자료 획득 장비로 구성되어 있다. p파 속도는 음파 송수신장비를 사용하였다.

  • PDF

Study of the environmental assessment of heavy metals bearing slag utilization (중금속 함유 폐기물의 재사용을 위한 환경적 평가에 관한 연구)

  • Bae, Hae-Ryong;Gwon, Yeong-Bae;Moszkowicz Pierre
    • 연구논문집
    • /
    • s.28
    • /
    • pp.161-172
    • /
    • 1998
  • In the recycling industry, the recuperation of zinc from Electric Arc Furnace dust by the Waelz process generates important quantities of slag. This slag presents good mechanical properties, and for the most siliceous slag. a high stability which would enable its use by total or partial substitution of certain granulates in civil engineering Our study (within the framwork of a European programme cofunded by the European Commission-DGXII) concerns the physico-chemical and mineralogical characterization and leaching behaviour of several types of Waelz slag. The leaching tests are regulatory tests and specific characterization tests of leaching behaviour. They take into account the influence of several main parameters of the valorization scenarios envisaged for the slag(e.g. pH, Redox potential, chemical nature of the leachant, type of contact-liquid/ solid etc.).

  • PDF

The Solidification Characteristics of Recycled Aggregate Mixed with Incineration Ash and Waste Concrete (소각재와 폐콘크리트를 이용한 재생골재의 고형화 특성)

  • Yeon, Ikjun;Ju, Soyoung;Lee, Sangwoo;Shin, Taeksoo;Kim, Kwangyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.5-13
    • /
    • 2008
  • In this study, It was carried out to evaluate the feasibility of recycled crushed concrete as aggregate used cement mortar replace sand and to investigate engineering properties of recycled aggregate for hazardous waste solidification. The compressive strength of cement mortar replaced 5-15% (wt.) recycled aggregate was over $163kgf/cm^2$ which is the standard of first grade concrete block class C. And cement mortar was examined to evaluate the stability by leaching test. Cu, Cd, Pb, Cr, and As as the heavy metals were proved very stable but mercury (Hg) was leached high concentration because it was simply tied to the cement surface. We investigated the crystal structures of cement mortar and they had shown the peaks of $Ca(OH)_2$, ettringite, and CSH (calcium silicate hydrate). As the result, the longer curing time, the higher CSH peak that means to increase compressive strength and the cement mortar was more stable. Therefore it was shown that it may be possible to apply hazardous waste solidification using recycled aggregate, fly ash and sewage sludge ash.

  • PDF

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF

The Engineering Properties of Concrete Exposed at High Temperature (고온을 받은 콘크리트의 공학적 특성)

  • 권영진;김용로;장재봉;김무한
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • The purpose of this study is to present data for the reusing, rehabilitation and estimation of safety of RC structure damaged by fire, and for the prevention of explosive spatting by investigation the properties of explosive spalling, compressive strength and ultrasonic pulse velocity according to kinds of fine aggregate, admixture and water-cement ratios. In explosive spalling properties with kinds of aggregate, explosive spalling does not appear or little at surface in the case of used sea sand, but the case of using recycled sand or crushed sand is worse and worse. Property with the kind of admixture does not appear specially. And high strength concrete with W/C 30.5% was taken spalling, but 55% does not appear. It is found that residual compressive strength after exposed at high temperature showed 45% in W/C 55%, and 64% in W/C 30.5% of its original strength averagely. Ultrasonic pulse velocity is different with kinds of aggregate. W/C. and heating time. When 3 month age after heating ultrasonic pulse velocity is recovered abut 1.3%~8.4% of its 1 month age after heating.

Field Application and Maintenance of sidewalk concrete block for PV Power Generation (태양광 발전을 위한 보도형 콘크리트 블록의 현장 적용과 유지관리)

  • Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • In order to fulfill the obligation to voluntarily reduce greenhouse gas emissions under the Paris Climate Agreement, the proportion of coal and nuclear power generation is reduced worldwide and national efforts are being made to spread renewable energy including solar power generation. Korea also intends to increase the proportion of renewable energy generation to 30~35% by 2040 by introducing laws and regulations. In addition, while the country is trying to apply solar power generation to sidewalks and roads, there is no research related to it in Korea. Therefore, as a precedent study to develop solar power generation roads, solar power generation concrete blocks applicable to sidewalks and plazas were developed and the applicability was evaluated by constructing them on the site. As a result of indoor experiment, compressive strength was measured by 25.5~35.7MPa and flexural strength was measured by 5.1~10.5MPa, which showed that all domestic standards were satisfied. However, the higher the unit cement amount, the lower the strength was measured according to the mixing of the broken fine aggregate. The absorption rate was 5.7%, which satisfied the domestic standard of 7% or less. As a result of the freeze-thawing test, the reduction rate of the compressive strength after 100 cycles was up to 6.3%. As a result of measuring the settlement amount after construction, the maximum of 2.498mm was measured and irregular settlement occurred in the overall area, which is because the resolution of the sand layer was poor during construction. Maintenance techniques of sidewalk concrete block and solar panel need to be established more efficiently through long-term operation in the further.

Mass Propagation of Dicentra spectabilis L. Lemaire Through In vitro Suspension Culture (현탁배양을 통한 금낭화(Dicentra spectabilis L. Lemaire)의 대량증식)

  • Lee, Kang-Seop;Sim, Ock-Kyeong;Shin, Jeong-Sun;Choi, Yong-Eui;Kim, Ee-Yup
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • Bleeding heart (Dicentra spectabilis L. Lemaire) is one of the most valuable wild flower in Korea. This work was conducted for the mass production of somatic embryos through suspension culture and more effective plant regeneration system in Dicentra spectabilis. High-frequency embryogenic callus proliferation was achieved in SH liquid medium supplemented with 1 mg/L 2,4-D. Half-strength SH medium was suitable concentration for somatic embryo induction and germination. About 5,000 embryos were produced per 250$m\ell$ flask after 4 weeks of culture. Germination rate of somatic embryos was decreased when GA$_3$ was added in medium. The plantlets showed a 58% survival rate when transferred to pots after 1 month of culture. The results indicate that micropropagation procedure via somatic embryogenesis can be applied for an efficient mass propagation of Dicentra spectabilis.

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.