• Title/Summary/Keyword: 재사용 가능

Search Result 2,783, Processing Time 0.032 seconds

Small Break LOCA Analysis for RCP Trip Strategy for YGN 3&4 Emergency Procedure Guidelines (영광3, 4호기 비상운전지침용 원자로냉각재펌프 정지전략을 위한 소형냉각재상실사고 분석)

  • Seo, Jong-Tae;Bae, Kyoo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.203-215
    • /
    • 1995
  • A continued operation of RCPs during a certain small break LOCA may increase unnecessary inventory loss from the RCS causing a severe core uncovery which might lead to a fuel failure. After TMI-2 accident, the CEOG developed RCP trip strategy called “Trip-Two/Leave-Two” (T2/L2) in response to NRC requests and incorporated it in the generic EPG for CE plants. The T2/L2 RCP trip strategy consists of tripping the first two RCPs on low RCS pressure and then tripping the remaining two RCPs if a LOCA has occurred. This analysis determines the RCP trip setpoint and demonstrates the safe operational aspects of RCP trip strategy during a small break LOCA for YGN 3&4. The trip setpoint of the first too RCPs for YGN 3&4 is calculated to be 1775 psia in pressurizer pressure based on the limiting small break LOCA with 0.15 ft$^2$ break size in the hot leg. The analysis results show that YGN 3&4 can maintain the core coolability even if the operator fails to trip the second too RCPs or trips at worst time. Also, the YGN 3&4 RCP trip strategy demonstrates that both the 10 CFR 50.46 requirements on PCT and the ANSI standards 58.8 requirements on operator action time can be satisfied with enough margin. Therefore, it is concluded that the T2/L2 RCP trip strategy with a trip setpoint of 1775 psia for YGN 3&4 can provide improved operator guidance for the RCP operation during accidents.

  • PDF

The Study on Manufacturing Technique and Influential Characteristics of Earrings from Bujang-Ri Site in Seosan (서산 부장리 유적 출토 이식(耳飾)의 제작기법 및 위세품적 성격에 대한 고찰)

  • Cho, Hyun Kyung;Cho, Nam Chul;Lee, Hun
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.282-305
    • /
    • 2010
  • Many earrings were excavated from Bujang-ri site in Seosan with various prestige goods such as the golden crowns, shoes and decorated swords. This proved that Bujang-ri site in Seosan fell within Hanseong Backjae area of influence in the 4~5th centuries. The earpieces of excavated prestige goods had been considred subordinate elements compared with the golden crowns, shoes and decorated swords. Twenty one earpieces were excavated from Bujang-ri site and formative features and material characteristics of them were analyzed by microscope and XRF. The material and manufacturing technique of earpieces were compared with excavated aspects of prestige goods. As a results, the earpieces that made of a small amount gold and by simple technique were the most whereas the earpieces that required advanced skills such as welding, workmanship and high purity of gold were smaller. Also the earpieces that required advanced skills were excavated from the tombs where the prestige goods such as the golden crowns, shoes and decorated swords appeared. Therefore, considering Hanseong Backjae used the gold wares as means in showing power for local influence men, the earpiece from Bujang-ri site in Seosan would be the standard on superiority of tomb's owner as gold purity.

A study on the Investigation and Removal the Cause of Blacken Effect of Waterlogged archaeological woods (수침고목재의 흑화 원인과 제거방법에 관하여)

  • Yang, Seok-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.413-430
    • /
    • 2007
  • This study analyzed the foreign substances in waterlogged archaeological woods and compounds in soil where waterlogged archaeological wood was buried, in order to examine the relationship between burial environment and foreign substances in waterlogged archaeological wood. The XRF(X-ray Fluorescence Spectroscopy) and EDX(Energy Dispersive X-ray) analysis were conducted to examine the effect of iron(Fe) to blacken the waterlogged wood. The XRF results showed that investigated soil contained Si, Al, and Fe. Wood ash contained more sulfur and Fe than any other elements in the EDX analysis. Cellulose and hemicellulose were significantly reduced at the surface of wood, which is the blackened part of waterlogged wood. Foreign substances changed the surface color. These problems could be solved by removal of foreign substances in waterlogged archaeological wood using EDTA(Ethylene Diamine Tetra Acetic acid). The optimum condition to remove Fe from waterlogged wood by EDTA was investigated. To do this, the concentration of Fe removed was measured with various concentration of EDTA-2Na. The optimum pH of EDTA-2Na was figured to be 4.1 to 4.3. As the concentration of EDTA increased, the extracted concentration of Fe also increased. In the case of 0.4 wt% of EDTA-2Na, about 60ppm of Fe was eliminated and was stabilized after 48 hours. In the case of EDTA-3Na, the optimum pH was 7 to 8, and about 10 ppm of Fe was eliminated at 0.4 wt% of EDTA-3Na. In the case of EDTA-4Na, the optimum pH was 10 to 11, and about 20 ppm of Fe was eliminated at 0.4 wt% of EDTA-4Na. In conclusion, the iron(Fe) in waterlogged archaeological wood was removed by EDTA treatment and it increased the whiteness of the surface.

Development of COVID-19 Neutralizing Antibody (NAb) Detection Kits Using the S1 RBD Protein of SARS-CoV-2 (코로나 바이러스 감염증-19의 재조합 S1 RBD 단백질을 이용한 COVID-19 바이러스의 중화항체 검사 키트의 개발)

  • Choi, Dong Ok;Lee, Kang Moon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • The COVID-19 virus is a β-genus virus that causes infection by mediating the angiotensin convertible enzyme 2 (ACE2) receptor, which is distributed in large numbers in the human respiratory tract. The disease requires effective post-management of antibody production by complete healers and vaccinators because there is no perfect remedy for the virus infection. This study aimed to develop recombinant proteins specifically responsive to neutralizing antibodies in clinical specimens and use them to develop a rapid diagnostic kit to diagnose neutralizing antibodies quickly and conveniently against the COVID-19 virus and confirm the possibility of commercialization through a performance evaluation. Rapid diagnostic kits using COVID-19 S1 RBD recombinant proteins can be applied to rapid diagnostic kits, with positive percentage agreement (PPA) and negative percentage agreement (NPA) of 100% and 98.3%, respectively, compared to the U.S. FDA-approved ELISA kits. If the performance of the rapid diagnostic kit is improved and neutralizing antibodies can be analyzed quantitatively using quantitative analysis equipment, it can be used as important data to predict immunity to the COVID-19 virus and determine additional vaccinations.

Control of physical properties and characteristics of soil through combination of ingredients of clay (태토 성분조합을 통한 도자기용 흙의 물성조절 및 특성변화)

  • Kim, Duhyeon;Lee, Haesoon;Kim, Jihye;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.35-50
    • /
    • 2021
  • This study analyzed the basic properties of soil material gathered around Maegok-dong in Gwangju, Gyeonggi-do Province (hereafter, "Maegok soil") and the physicochemical changes in the Maegok soil resulting from the addition of other clay materials in order to present scientific information about the properties of clay available for pottery production. Gravel, coarse sand, and fine sand account for 73% of the total mass of the Maegok soil. Therefore, it required refinement through sifting in order to serve in pottery clay. After sifting, the amount of silt and clay in the soil increased to 95% of the total mass. However, since it lacked plasticity and viscosity, buncheong soil was added. When it was mixed with bungcheong soil at a ratio of 7:3, Maegok soil improved as pottery clay as its viscosity increased, demonstrating compositional properties appropriate for ceramic clay even after firing. Further, its water-absorption rate was decreased to 0.40. This means that soil gathered from anywhere can be used for pottery-making by refining its original properties and through mixture with clay with specific components which help the pottery maintain its shape even after firing.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

Wastewater Reuse in Textile Industry: Case of Bandung, Indonesia (섬유공장폐수 재이용 사례: 인도네시아 반둥을 대상으로)

  • Chung, Youngkun;Lee, Mi-Young;Yang, Shi Chun;Kang, Seoktae
    • Journal of Appropriate Technology
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • Citarum river in West Java, Indonesia plays strategic roles for Jakarta metropolitan areas. Besides it provides major source of water supply such as domestics and drinking water including Jakarta, it also provides water for hundreds of industries through its cascade reservoirs. However, recently, Citarum river basin has been seriously suffering from water and groundwater pollution as well as the lowering-down of groundwater level due to the extreme use of water resources in dry season by domestic and industrial activities. This project objectives are design and installation of industrial wastewater treatment/recycle facilities to overcome the problem of water pollution and the lowering-down of groundwater level in Bandung. For these, cyclone type dissolved air flotation (DAF), CYFLOAT, was successfully installed as the appropriate technology for the target textile industry with 100 ton/day of capacity. The CYFLOAT system can remove the 96.8% of particulates, which are known as a critical factor to recycle the wastewater, within 40 min of residence time. Furthermore, The CYFLOAT system can reduce the operational cost and land use. The project was carried out in strong partnership with local institute including UNPAR, IBT, and PUSKIM for the sustainability of the technology to textile industry complex in Indonesia.

A Study on the Elderly's User Experience by Using Virtual Reality (가상현실 기기를 활용한 고령자 사용자 경험에 관한 연구)

  • Lee, Jong-Sik;Lee, Kang-Nyeon
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • This study is about the elderly people's use and experience of Virtual Reality (VR) in order to enhance their quality of life. Leisure is main activity of the elderly. As a result, the quality and diversity of leisure affects the quality of the elderly people's life. VR services including video contents could provide them with advanced and interesting experiences. Across the world, population aging becomes one of the most important problems in each society. The social and economic burden of aging is serious challenge to sustainability welfare of the world, including S. Korea. The authors used virtual reality devices to conduct experiments on 99 aged 50 to 90 (men's average age : 75 and women's average age : 70.8). Through the survey, major variants were measured such as system quality, present sense, enjoyment, intent to reuse, and awareness of advanced technology. Multiple regression analyses with the presence as a dependent variable resulted in a sense of closeness (t = 5.381, p <. 01) and a sense of clarity (t = 4.494, p <. 01). The presence of an independent variant had significant effects on pleasure (t = 4.312, p <. 01) and significant effects on the intent to reuse (t = 3.323,).Therefore, it can be interpreted that the higher the sense of existence, the more pleasure and the intent to reuse it. As a result, the possibility of using VR devices and content to enjoy leisure activities can be found in this study even if the elderly group is unfamiliar with IT devices.

Surface Modification of Nano Porous Silica Particle for Enzyme Immobilization (효소 고정화를 위안 실리카 나노세공 입자의 표면개질)

  • Cho, Hyung-Min;Kim, Jong-Kil;Kim, Ho-Kun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.360-365
    • /
    • 2006
  • The objectives of this study were to develop nano-pore silica particles and to modify its surface for use as an enzyme immobilization matrix. Sol-gel reaction was used to produce silica particles of various nano pore sizes with hydroxyl groups on their surfaces. The surface was modified with aldehyde that was confirmed by fluorescence imaging. Trypsin was covalently immobilized by reductive amination. Surface density of the immobilized trypsin was ca. $350{\mu}g/m^2$, which was approximately 17- and 35-fold higher than those from the surfaces with hydroxyl and amine group, respectively. About 90% of the initial enzyme activity was maintained after the 12th use of repeated use. When compared with the commercial matrices, the nano-pore silica particle was superior in terms of immobilization yield and specific activity. This study suggests the nano porous silica particles can be used as enzyme immobilization matrix for industrial applications.