• 제목/요약/키워드: 재료 불확실성

Search Result 150, Processing Time 0.025 seconds

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Statistical Behavior of RC Cooling Tower Shell due to Shape Imperfection (철근콘크리트 냉각탑의 형상불완전에 의한 확률론적 거동)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.147-158
    • /
    • 2000
  • For the large scale reinforced concrete cooling tower shells, the shape imperfection can be introduced due not only to mistakes in the process of construction but also to the long term behavior of concrete. The shape imperfection evokes the additional responses such as displacements and stresses in addition to the design values. In this study, the statistical behavior of the RC cooling tower shell due to the shape imperfection is investigated using the Monte Carlo simulation. The radius of cooling tower and the shell thickness are adopted as the parameters which cause the shape imperfection. The shape imperfection is modeled as a stochastic field rather than the local one of axisymmetric or bulge type of imperfection. The randomness in the radius is shown to be more affecting the structural responses than the randomness in the shell thickness. In addition to the geometrical randomness, the effect of randomness in the modulus of elasticity on the structural response is also investigated and compared with that of the geometrical ones.

  • PDF

Response Variability of Laminated Composite Plates with Random Elastic Modulus (탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-345
    • /
    • 2008
  • In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.

Effect of Material Property Uncertainty on Warpage during Fan Out Wafer-Level Packaging Process (팬아웃 웨이퍼 레벨 패키지 공정 중 재료 물성의 불확실성이 휨 현상에 미치는 영향)

  • Kim, Geumtaek;Kang, Gihoon;Kwon, Daeil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • With shrinking form factor and improving performance of electronic packages, high input/output (I/O) density is considered as an important factor. Fan out wafer-level packaging (FO-WLP) has been paid great attention as an alternative. However, FO-WLP is vulnerable to warpage during its manufacturing process. Minimizing warpage is essential for controlling production yield, and in turn, package reliability. While many studies investigated the effect of process and design parameters on warpage using finite element analysis, they did not take uncertainty into consideration. As parameters, including material properties, chip positions, have uncertainty from the point of manufacturing view, the uncertainty should be considered to reduce the gap between the results from the field and the finite element analysis. This paper focuses on the effect of uncertainty of Young's modulus of chip on fan-out wafer level packaging warpage using finite element analysis. It is assumed that Young's modulus of each chip follows the normal distribution. Simulation results show that the uncertainty of Young's modulus affects the maximum von Mises stress. As a result, it is necessary to control the uncertainty of Young's modulus of silicon chip since the maximum von Mises stress is a parameter related to the package reliability.

Crack Growth Life Estimation and Reliability Analysis of High Temperature Turbine (고열 터빈의 균열성장수명 평가 및 신뢰성 분석)

  • Jang, Byung-Wook;Park, Jung-Sun;Kim, Hyun-Jae;Chen, Seung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.350-353
    • /
    • 2009
  • In the fatigue analysis and the components design, uncertainties are caused by the variances of geometry data and applied loads, and the scatter of material properties. In this paper, fatigue crack growth life of turbine is evaluated by fracture mechanics and the reliability analysis is accessed by the fist order second moment method and Monte Carlo simulation.

  • PDF

Nondestructive Evaluation Techniques on the Radiation Damage of Reactor Pressure Vessel Steel Due to Neutron Irradiation (중성자 조사에 따른 원자로 재료의 조사 손상 비파괴평가 기술)

  • Kim, Byoung-Chul;Chang, Kee-Ok;Choi, Sun-Pil;Lee, Sam-Lai
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • 원자로 압력용기 재료의 중성자 조사 취화 문제는 원자력발전소의 안전성 및 수명 관리에 가장 중대 한 영향을 미친다. 재료의 조사 취화를 평가하기 위하여 수행하고 있는 충격 및 인장시험 같은 파괴적 시험 결과는 석출물 크기나 분포, 전위 밀도 등, 재료 자체의 조직학적 특성에 좌우되므로 한정된 시편을 이용한 평가에는 많은 불확실성이 존재하게 된다. 따라서 이와 같은 문제점을 해결하기 위하여 비파괴기술을 이용한 조사 취화 평가에 대한 많은 연구가 진행되고 있다. 현재 원자로 압력용기 재료의 조사 취화에 따른 미세 조직 변화를 분석하기 위하여 응용되고 있는 비파괴기술로는 전기, 자기, 전자기, 초음파 및 경도측정법 등이 있으나 비파괴피험 결과와 미세조직의 변화, 기계적 성질 및 취화 정도 등과의 상관 관계를 정립해야만 기존 파괴적 시험의 대체가 가능하게 된다. 따라서 현재까지 수행되고 있는 여러 비파괴기술을 이용한 조사 취화 평가 연구결과를 비교 분석하여 보다 실현 가능성 있는 비파괴기술을 검토하였다.

  • PDF

Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method (반응면 기법을 이용한 복합재 평판의 신뢰도 및 민감도해석)

  • Lee, Seokje;Jang, Moon-Ho;Kim, Jae-Ki;Moon, Jung-Won;Kim, In-Gul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.461-466
    • /
    • 2013
  • Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using COMSOL and MATLAB interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle.

Probabilistic Study on Pressure Behavior in Concrete Vacuum Tube Structures (콘크리트 진공튜브의 압력 변화에 대한 확률적 평가)

  • Park, Joonam
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.186-192
    • /
    • 2014
  • In this paper, a reliability analysis is performed where the pressure change inside a concrete tube is probabilistically estimated considering the uncertainties inherent in the material and the system discontinuity. A set of uncertain quantities related to the equivalent system air permeability and the atmospheric pressure, are defined as random variables with specific distribution. The pressure change inside a concrete tube is then probabilistically described using both analytical and simulation approaches. The reliability analysis confirms that the geometric configuration of a concrete tube needs to be changed from the initial configuration obtained from the deterministic analysis.

Topology Optimization based on Monte Carlo Analysis (몬테카를로 해석 기반 확률적 위상최적화)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • In this paper, we take into account topology optimization problems considering spatial randomness in the material property of elastic modulus. Based on 88 lines MATLAB Code, Monte Carlo analysis has been performed for MBB(messerschmidt-$b{\ddot{o}}lkow$-blohm) model using 5,000 random sample fields which are generated by using the spectral representation scheme. The random elastic modulus is assumed to be Gaussian in the spatial domain of the structure. The variability of the volume fraction of the material, which affects the optimum topology of the given problem, is given in terms of correlation distance of the random material. When the correlation distance is small, the randomness in the topology is high and vice versa. As the correlation distance increases, the variability of the volume fraction of the material decreases, which comply with the feature of the linear static analysis. As a consequence, it is suggested that the randomness in the material property is need to be considered in the topology optimization.

Statistical Variability of Mechanical Properties of Reinforcements (철근 콘크리트용 봉강의 역학적 특성의 통계적 변동성)

  • Kim, Jee Sang;Paek, Min Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.115-120
    • /
    • 2011
  • The strength of reinforced concrete members has uncertainty from material properties of, concrete and reinforcements, section dimensions, and construction errors and so on. The accurate evaluation of these uncertainties is necessary to assure the reasonable safety. The uncertainties should be taken into account in design using structural reliability theory which requires probabilistic models for such uncertainties. In current Korean design code, most reliability evaluations were performed based on foreign data because of lack of local data. In this paper, the probabilistic models for yield strength of reinforcements were developed based on local data. The effects of various factors, nominal yield strength, diameter of reinforcements, and companies, on the models are also examined. According to data analysed, the effects of those factors are not significant. The probability model for yield strength of reinforcements in Korea can be expressed with Beta distribution based on collected data.