• Title/Summary/Keyword: 재료 물성

Search Result 2,468, Processing Time 0.026 seconds

Effects of Orientation via Solid-State Extrusion on Properties of Polypropylene/Mica Composites (폴리프로필렌/마이카 복합재료의 물성에 미치는 고상압출 배향의 영향)

  • Lee, Jae Choon;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this work is to investigate the specific gravity, thermal, and mechanical property changes of polypropylene (PP)/mica composites before and after solid-state extrusion. On increasing the filler content, the specific gravity of the composites increased. The specific gravity of the oriented specimen containing filler in PP matrix is found to be much smaller than that of pre-specimen due to the formation of more microvoids. The presence of microvoids in the case of oriented composite specimen significantly affected the tensile and flexural properties of the composites. Both flexural strength and modulus of the composites showed maxima when the mica contents was 10 wt%, regardless of the orientation via solid state extrusion.

A Study for Experiment to Measure Mechanical Properties of Pressurizer Nozzle and Safety-Ends in Nuclear Power Plant (원전 가압기 노즐 및 안전단 재료에 대한 기계적 물성시험 연구)

  • Lee, Kyoung-Soo;Lee, Sung-Ho;Kim, Jin-Weon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.147-153
    • /
    • 2013
  • Recently the primary water stress corrosion cracking(PWSCC) has occurred in the dissimilar metal weld region between pressurizer nozzle and safe-end in nuclear power plants(NPPs). As material of the pressurizer nozzle, SA508 Gr. 3 low alloy steel was used. F316L stainless steel and Alloy 82/182 were used as safe-end and weld metal, respectively. Although mechanical properties are needed for evaluation of the structural integrity against flaw in the material, material specification and standard don't supply those properties. Therefore, the present study conducted tensile and fracture toughness tests on SA508 Gr.3 and F316L stainless steel at ambient temperature and operating temperature of NPPs and reported the tested results.

Development of Ceramics Material Property Database (세라믹 재료물성 데이터베이스 개발)

  • 이정구;이상호;김창규;김지영;김태중
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • Prompt and efficient information collection on each research area is emerging as the key factor of national technology competitiveness in industrialized society. Accordingly, constructing a variety of specialized DBs as the tool for supporting R&D activities and providing appropriate information are essential task to be solved in promoting R&D productivity. On this study, We have developed ceramics material property DB to support and facilitate R&D activities of industry, academia and research institutes. The ceramic property DB which was regarded as the most important DB surveyed from korean done for scientists and researchers was selected. To develop this DB, us have designed DB customized for domestic users after analyzing items and structures of ceramic material property information. We hope that R&D researchers can save time and cost in acquiring property information and the R&D productivity will be improved by utilizing our research result.

  • PDF

Functionally Gradient Materials (FGMs) for Improved Thermo-mechanical Properties (열.기계적 특성 향상을 위한 경사기능 재료 (FGM))

  • 박성용;김진홍;김문철;박찬경
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • The basic concept of functionally gradient materials (FGM) is to fabricate materials type having possibilities of applications in various fields by changing their intrinsic properties with continuous gradient. The present communication has reviewed the developments and applications of various FGMs designed for improved thermo-mechanical properties, in which the thermal protective and wear resistant materials are especially focused. Effects of thermo-mechanical properties and limits of FGMs designed for high temperature applications were mainly understood in terms of residual stress evolved from the design and fabrication. In addition, FGMs applied in structural parts were also introduced and discussed in terms of typical fabrication method for FGMs.

Studies on Thermal and Mechanical Properties of Siloxane-modified Epoxy Resins (실록산 변성 에폭시 수지의 열적.기계적 특성 연구)

  • 박수진;김현철;박병기
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.451-454
    • /
    • 2002
  • 최근 우주 항공 및 자동차 산업 등에서 기존의 금속재료를 대체하기 위하여 고강도 경량 구조 재료인 선진 복합재료 (advanced composite materials)의 개발에 관심이 모아지고 있다[1]. 선진 복합재료의 매트릭스 수지로서 가장 많이 사용되고 있는 에폭시는 수지 및 경화제의 종류에 따라 여러 가지 물성을 나타낼 수 있다. 에폭시 수지는 기계적 물성 및 내화학성이 우수하고 경화시 수축변형이 적은 장점이 있으나 높은 가교밀도 때문에 순간적인 충격에 취약하다는 단점을 지니고 있다. (중략)

  • PDF

Effects of Piezoelectric Material Constants on the Performance of Ultrasonic Transducers (초음파 탐촉자 성능에 미치는 압전재료 물성의 영향)

  • 노용래;임종인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1E
    • /
    • pp.48-55
    • /
    • 1993
  • 초음파 탐촉자의 개발에 필요한 압전재료의 선택을 위하여 탐촉자의 성능에 영향을 미치는 탄성, 유전, 압전 상수의 영향을 알아보았다. 해석 방법으로는 등가회로를 통한 두께 모드 발신기, 수신기, 펄스 반사기의 전달함수를 구하였으며, 이로부터 압전재료의 각 물성치가 가져야 할 바람직한 특성을 제시하였다. 본 연구의 결과는 재료의 선택시와 더불어 세라믹 공학자들이 초음파용 압전소자를 개발함에 있어 적절한 지침이 될 수 있을 것이다.

  • PDF

Effect of Repeated Immersion on Material Properties of Asphalt Mixtures (반복적인 수침이 아스팔트 혼합물의 재료물성에 미치는 영향)

  • Hwang, Sung-Do;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Moisture damage of asphalt mixtures can occur because of a loss of bond between the asphalt binder and the fine and coarse aggregates. Therefore, moisture damage on asphalt pavements is the main cause of potholes, which is one of the main distress type of asphalt pavement. The purpose of this study is to evaluation effect moisture damage on material properties of asphalt mixtures through the laboratory performance test. The existing Modified Lottman test procedure was improved and the number of times that thermal cyclic conditioning can be added until the asphalt mixtures is damaged, was tested in order to exhibit the changes of the material properties because of moisture damage by immersion. Through the above experiments, it was found that the material properties of asphalt mixtures on room-temperature were rapidly decreased with loss of about 50% at initial stage of moisture damage caused by the amount of repeated immersion. Also, it was found that the property damage ratio using material properties of failure energy and $DCSE_f$ by test temperature $25^{\circ}C$ were showed a high relationship to moisture damage of the asphalt mixtures caused by the amount of repeated immersion.

  • PDF

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure (성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구)

  • Park, Myong-Gil;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.

Effect of Interface on the Properties of Cord-Rubber Composites (코드섬유-고무 복합재료의 물성치에 대한 계면의 영향)

  • Lim, Hyun-Woo;Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.