• Title/Summary/Keyword: 재료 모사

Search Result 513, Processing Time 0.021 seconds

Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling (응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석)

  • Woo, Kyeongsik;Cairns, Douglas S.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • In this paper, fracture behavior of laminated composites with notch was studied by cohesive zone modeling approach. The numerical modeling proceeded by first generating 3 dimensional solid element meshes for notched laminated composite coupon configurations. Then cohesive elements representing failure modes of fiber fracture, matrix cracking and delamination were inserted between bulk elements in all regions where the corresponding failures were likely to occur. Next, progressive failure analyses were performed simulating uniaxial tensile tests. The numerical results were compared to those by experiment available in the literature for verification of the analysis approach. Finally, notched laminated composite configurations with selected stacking sequences were analyzed and the failure behavior was carefully examined focusing on the failure initiation and progression and the dominating failure modes.

Prediction of Non-linear Behavior of Flexible Matrix Composites (유연수지를 기지재료로 하는 복합재료의 비선형거동 예측)

  • 서영욱;우경식
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.24-31
    • /
    • 2006
  • In this paper, mechanical behavior of unidirectional composites with flexible matrix was predicted by geometrical non-linear finite element analysis. Two typical idealized unit cells of square and hexagonal fiber arrays were modeled and these were subjected to different loadings. The stress-strain behavior of composites was predicted from which the effective properties were calculated. The hyperelasticity of polyurethane matrix was considered using Mooney-Rivlin model. In result, the stress-strain behavior of flexible composites shows non-linearity, especially it is remarkable under transverse normal and shear loading conditions. In this cases, there are great difference between square and hexagonal fiber array models.

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.

Effect on Material Property on the Frature Propagation Behavior (재료의 취성과 연성이 균열의 진전에 미치는 영향)

  • Jeong, Jaeyeon;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.919-926
    • /
    • 2014
  • In this paper, the effect of material properties on fracture behavior was studied using cohesive zone model and extended finite element method. The rectangular tensile specimen with a central inclined initial crack was modeled by plane stress elements. In the CZM modeling, cohesive elements were inserted between every bulk elements in the predicted crack propagation region before analysis, while in the XFEM the enrichment to the elements was added as needed during analysis. The crack propagation behavior was examined for brittle and ductile materials. For thin specimen configuration, wrinkle deformation was accounted for by geometrically nonlinear post-buckling analysis and the effect of wrinkling on the crack propagation was investigated.

소형항공기용 고정식 착륙장치의 동적특성에 관한 연구

  • Choi, Sun-Woo;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.191-196
    • /
    • 2004
  • Most of studies for landing gear have been performed to analyze the shock absorbing characteristics of oleo-pneumatic struts. But it is not easy to solve the dynamic specific properties of spring type composite landing gear using a present method. The shock absorbing abilities of oleo-pneumatic landing gear strut are under influence of the internal design method on the strut rather than the landing gear structure itself. Unlike oleo type, spring type composite strut absorbs the shock with structural strength and dynamic characteristics of the strut's material and shape. The tests and analysis for the shock absorbing rate and dynamic behavior of the spring type composite fixed landing gear for 4 seats small aircraft, have been performed using landing gear drop test rig.

  • PDF

A Statistical Study of Effective Properties due to Fiber Tow Misalignment and Thickness Change for Plain Weave Textile Composites (섬유다발 배열 및 적층수에 따른 평직복합재료 등가물성치의 변화에 관한 통계적 연구)

  • 우경식;서영욱
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.63-72
    • /
    • 2000
  • In this paper, statistical treatments of effective properties for plain weave textile composites were presented. Configurations up to 32 layers with varied stacking phase shifts were considered. Effective properties were calculated by numerical simulation in which uni-axial tensile and shear load were applied at unit cell. Sample analysis was utilized to consider the inherent randomness in the phase shift and the results were treated statistically. It was found that effective properties were dependent on stacking phase shifts for thin plain weave textile composites. The distribution of $E_{xx}$ and $V_{xy}$ were skewed and the range of possible values was relatively large. As the number of layers increased, however, the distribution width became narrower and mean values converged. In contrast, $G_{xy}$ was not affected by phase shifts and thickness changes.

  • PDF

Experimental Study on the Damage of Concrete Material by Impact Load (충격 하중에 의한 콘크리트 재료의 손상에 관한 실험적 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • Although the number of blasting operations in urban area are growing, lesser attentions have been paid to the effects of impact load on nearby concrete structures. In this study, the properties of concrete were obtained by both the sonic velocity and Schmidt rebound tests, and the degree of damage in concrete material was evaluated by measuring the sonic velocity in sample before and after applying the impact load. The test results shows that the sonic velocity decreases with the increase of intensity of impact load, and the degree of damage in concrete samples is lower when the samples have higher strength and sonic velocity.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (I) - Material Strength - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (I) - 재료 강도 -)

  • Kim, Sung-Ryul;Lee, Juhyung;Park, Jae-Hyun;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.259-266
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the numerical models and the related input parameters were analyzed to simulate the axial load-movement relations, which were obtained from the compression loading tests for the cylindrical specimens of the steel pipe, the concrete, and the steel-concrete composite. As the results, the behavior of the steel pipe was simulated by the von-Mises model and that of the concrete by the strain-softening model, which decreases cohesion and dilation angles as the function of plastic strains. In addition, the reinforcing bars in the concrete were simulated by applying the yielding moment and decreasing the sectional area of the bars. The applied numerical models properly simulated the yielding behavior and the reinforcement effect of the steel-concrete composite piles. The parametric study for the real-size piles showed that the material strength of the steel-concrete composite pile increased about 10% for the axial loading and about 20~45% for the horizontal loading due to the reinforcement effect by the surrounding steel pipe pile.

Inverse Estimation Method for Spatial Randomness of Material Properties and Its Application to Topology Optimization on Shape of Geotechnical Structures (재료 물성치의 공간적 임의성에 대한 역추정 방법 및 지반구조 형상의 위상 최적화 적용)

  • Kim, Dae-Young;Song, Myung Kwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • In this paper, the spatial randomness and probability characteristics of material properties are inversely estimated by using a set of the stochastic fields for the material properties of geotechnical structures. By using the probability distribution and probability characteristics of these estimated material properties, topology optimization is performed on structure shape, and the results are compared with the existing deterministic topology optimization results. A set of stochastic fields for material properties is generated, and the spatial randomness of material properties in each field is simulated. The probability distribution and probability characteristics of actual material properties are estimated using the partial values of material properties in each stochastic field. The probability characteristics of the estimated actual material properties are compared with those of the stochastic field set. Also, response variability of the ground structure having a modulus of elasticity with randomness is compared with response variability of the ground structure having a modulus of elasticity without randomness. Therefore, the quantified stochastic topology optimization result can be obtained with considering the spatial randomness of actual material properties.

Non-linear tensile behavior of high manganese steel based on elasto-plastic damage model (탄-소성 손상모델을 활용한 고망간강의 인장거동 모사에 관한 연구)

  • Kim, Jong-Hwan;Lee, Jeong-Ho;Kim, Seul-Kee;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.222-229
    • /
    • 2017
  • High manganese steel exhibits excellent mechanical properties with respect to strength and durability at low temperatures. Recently, high manganese steel has been considered as an alternative to existing materials, such as nickel steel and SUS304L for application as tank material for Liquefied Natural Gas (LNG) cargo containment systems. In the present study, tensile tests were performed at room and cryogenic temperatures in order to investigate the mechanical properties and non-linear tensile behavior of high manganese steel. In addition, elasto-plastic damage model was applied using the finite element analysis software ABAQUS via a user defined material subroutine (UMAT) to describe the material behavior. Finally, the results of the finite element simulations using the UMAT were compared to those of the tensile tests in order to validate the proposed UMAT. It has been demonstrated that the UMAT can effectively describe the non-linear tensile behavior of high manganese steel.