• Title/Summary/Keyword: 재료 감쇠비

Search Result 98, Processing Time 0.021 seconds

An Experimental Study on the Material Characteristics of Mechanical Filters for Eliminating High-Frequency Noise in Accelerometer Measurements (가속도 측정에 있어 고주파 잡음 제거를 위한 기계적 필터의 재료 특성에 관한 실험적 연구)

  • Choi, Won-Yeong;Yoo, Seong-Yeol;Cha, Ki-Up;Kim, Sung-Soo;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.773-778
    • /
    • 2011
  • Accelerometers are widely used to measure the lateral vibrations of pipe-like structures such as a gun tube under impulse loads. Stress waves that precede the lateral vibrations due to the explosion within a gun contribute little to the vibrations, but saturate the accelerometer input. A mechanical filter eliminates this high-frequency stress wave and only transmits the signal corresponding to the lateral vibrations. The mechanical filter consists of a mechanical structure for mounting the accelerometers and a damping material. The low-pass filter characteristics are determined from the equivalent damping and stiffness property of this damping material. In this paper, we tested nine commercially available damping materials for their vibration characteristics by using a test rig. We also observed the change in the vibration characteristics while compressing the material. We designed and manufactured a mechanical filter and verified its filtering performance.

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

탄소섬유강화 복합재료의 드릴링 특성에 관한 연구

  • 김홍배;함승덕;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.115-119
    • /
    • 1992
  • 산업의 발전과 더불어 새로운 재료의 개발에 대한 요구가 날로 증가하고 있으며 이와 같은 요구에 부응하기위하여 각종의 신소재가 개발되고있다. 이들 신소재 중에서 섬유강화 복합재료는 높은 비탄성과 비강도특성 때문에 구조물의 경량화가 요구되는 우주선, 항공기 등에 주로 이용 되어 왔으며 최근에는 복합재료의 가격이 저렴해 지면서 이 재료의 높은 비탄성과 감쇠특성을 이용하고자 스포츠용품 및 기계 부품에도 섬유강화 복합재료의 이용이 증가 되고 있다. 항공기나 고속회전체의 부품을 복합재료로 제작하였을 경우 복합재료를 다른 금속이나 다른 복합재료부품에 접합(joining)시켜야 하는데 이 때문에구조물의 효율은 Joint에서 주로 죄우된다. Joint를 제작하기 위해서는 복합재료의 표면을 가공한 수 Adhesive를 이용하거나 Bolt로 체결하기 위해 구멍 뚫기 작업이 필요하여 드릴링을 하였을때 이 재료가 매우 연마성이 강하여 심한 공구마멸을 일으키며, 드릴의 입구와 출구쪽에서 각 ply들의 박리 현상이 발생하고, 드릴가공된 벽면으로부터 섬유 또는 레진의 탈락현상등이 발생하는 결점을 가지고 있다. 따라서 본 연구에서는 이러한 결점을 최소화하여 고정밀도의 높은 생산성을 얻기위한 가공기술에 대한 자료를 만들고 최적 절삭조건 및 복합재료가공용 드릴의 설계를 위한 지침을 제시하고자 고속도강 표준드릴을 사용하여 유리섬유 에폭시 복합재료및 탄소섬유 에폭시 복합재료의 드릴링 실험에서 절삭조건이 가공면 생성, 공구마멸, 절삭력에 미치는 영향에 대하여 조사하였다.

Evaluation of Dynamic Properties of Crushed Stones Used as Reinforced Trackbed Foundation Materials Using Midsize Resonant Column Test apparatus (중형 공진주 시험기를 이용한 국내 쇄석 강화노반재료의 동적특성 평가)

  • Lim, Yujin;Lee, SeongHyeok;Lee, Jinwoog;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.476-484
    • /
    • 2012
  • In this study, a mid-size RC test apparatus equipped with analyzing program is developed that can test samples up to D=10cm diameter and H=20cm height which is larger than usual samples of D=5cm and H=10cm used mostly in practice. Thus, crushed stones with larger grains up to 38mm in diameter used mostly in Korea as reinforced trackbed materials in track construction could be considered effectively than conventionally used RC apparatus for evaluation of the dynamic properties of the materials by using the newly developed RC apparatus. The RC test apparatus was designed and assembled based on the concept of fixed-free fixity conditions and driving mechanism proposed by Stokoe. Using the developed RC test apparatus, three types of representative crushed reinforced trackbed materials were tested in order to get the dynamic properties of the materials such as $G/G_{max}$ reduction curves and damping ratio D. For comparison purpose, a small RC test apparatus has been used to test the same materials.

Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse (철골조의 연쇄붕괴 민감도 해석)

  • Park, Jun-Hei;Kim, Jin-Koo;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2008
  • Recently a lot of researches have been conducted on the progressive collapse of structures which is the total collapse of structures initiated by localized damage. Most of the previous studies on the field of progressive collapse have followed deterministic approach without considering uncertainty involved in design variables, which results in unknown reliability of the analysis results. In this study the sensitivity analyses are carried out with design variables such as yield strength, live load, damping ratio, and elastic modulus on the vertical deflection of the joint from which a column is suddenly removed. The Monte Calro simulation, tornado diagram method, and the first order second moment method(FOSM) are applied for the sensitivity study. According to the nonlinear static analysis results, the vertical deflection is most affected by the variation of yield strength of beams. The nonlinear dynamic analyses show that the behaviour of model structures is highly sensitive to variation of the yield strength of beams and the structural damping ratio.

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF

Nondestructive Evaluation Using Electromagnetic-Acoustic Transducer (Electromagnetic-Acoustic Transducer를 이용한 비파괴평가)

  • Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.278-284
    • /
    • 1997
  • EMAT는 비접촉으로 초음파를 송수신 할 수 있는 탐촉자로서 시험체와 탐촉자간의 접촉을 위한 매개 물질이 필요치 않으므로, 움직이고 있는 물체에 초음파탐상법을 적용하고자 하는 분야와 초음파의 속도를 정밀하게 측정하고자 하는 분야에 주로 응용된다. 구체적으로는 길이가 긴 튜브류의 결함 탐상, 용접중인 재료의 용접상태 감시, 기차바퀴 및 레일의 결함 탐상, 고온상태인 재료의 결함 탐상 등이 비접촉 특성을 이용하여 적용될 수 있는 분야이며, 재료의 집합조직 및 소성이방성의 측정, 재료의 미세조직 및 기계적 강도의 예측, 그리고 잔류응력의 측정 등이 정밀한 초음파속도 및 감쇠의 측정으로부터 적용될 수 있는 분야이다. EMAT가 일반적인 접촉식초음파탐상법에 비하여 특별한 분야에의 응용에 큰 장점을 가지고 있지만, 낮은 에너지 전환효율, 넓은 불감영역, 그리고 사용주파수의 한계 등의 문제를 가지고 있기 때문에 기존의 접촉식 방법의 적용이 용이한 분야에의 적용은 필요하지 않다. 그러나 특별한 목적과 용도에의 적용 필요성이 생길 경우에는 적절한 연구를 통하여 알맞은 탐촉자를 제작하고 탐상 방법을 개발함으로서 본래의 목적에 알맞은 탐상이 수행될 수 있다.

  • PDF

An Improved Load Control Strategy for the Ultimate Analysis of Curved Prestressed Concrete Cable-Stayed Bridge (곡선 PSC 사장교의 극한해석을 위한 개선된 하중제어법)

  • Choi, Kyu-Chon;Lee, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • A study for the nonlinear solution strategies to predict the ultimate behavior of a curved PSC cable-stayed bridge with complex geometry and highly nonlinear characteristics is presented. The load and displacement control strategies are used and found to be stable for the nonlinear solution of the PSC bridge up to the moderately excessive load. The ultimate analysis of curved PSC cable-stayed bridge using these solution strategies is not converged due to the propagation of the cracks in the wide range of the concrete elements and excessive variation of the stresses in the concrete elements and cables according to the complex geometry. The load control strategy using scale-down of the unbalanced loads is proposed as an alternative method for the case that the solution is not converged due to the severe nonlinearities involved in the PSC structures like a curved PSC cable-stayed bridge. Through the ultimate analysis of the PSC girder, the accuracy and the stability of the proposed solution strategies are evaluated. Finally, the numerical results for the ultimate analysis of the curved PSC cable-stayed bridge using scale-down of the unbalanced loads are compared with those obtained from other investigator. The validity of the proposed nonlinear solution strategy is demonstrated fairly well.

An Evaluation of Loss Factor of Damping Treatment Materials for Panels of Railway Vehicles (철도차량용 패널 감쇠처리재의 감쇠계수 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2019
  • This paper is a study on the evaluation of loss factor of damping treatment materials to reduce the noise and vibration for panels of railway vehicles and automobiles. In order to determine the modal parameters of damping materials, beam excitation tests were carried out using different type PVC coated aluminum and steel base beam specimens. The specimens were excited from 10 Hz to 1000 Hz frequency range using sinusoidal force, and transfer mobility data were measured by using an accelerometer. The loss factors were determined by using integrated program, based on theories of Half Power Method, Minimum Tangent Error Method, Minimum Angle Error Method and Phase Change Method, which enable to evaluate the parameters using modal circle fit and least squares error method. In the case of lower loss factor and data of linear characteristics, any method could be applied for evaluation of parameters, however the case of higher loss factor or data including non-linear characteristics, the minimum angle error method could reduce the loss factor evaluation. The obtained dynamic properties of the coating material could be used for application of Finite Element Method analyzing the noise control effects of complex structures such as carbody or under-floor boxes of rolling stock. The damping material will be very useful to control the structural noise, because the obtained modal loss factors of each mode show very good effect on over $2^{nd}$ mode frequency range.