• 제목/요약/키워드: 재료관리

Search Result 1,308, Processing Time 0.03 seconds

Mechanical Properties of Cement Grout Including Conductive Materials (전도성 재료를 포함한 시멘트 그라우트의 역학적 특성)

  • Choi, Hyojun;Cho, Wanjei;Hwang, Bumsik;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2020
  • Recently, underground spaces have been developed variously due to the concentration of the building structure in downtown area and reconstruction of the apartment. However, various problems such as differential settlement are occurring in the waterproof and reinforcement construction. In grouting method, which is frequently used for the ground reinforcement, quality control was performed by measuring the injection quantity of grouting materials and performing laboratory tests using boring samples, but it is difficult to determine whether the ground reinforcement has been performed properly during the construction stage. In order to solve this problem, a research is needed to carry out quality control by measuring electric resistivity after grouting is performed using grouting materials mixed with conductive materials. In this research, as a basic study of the new grouting method using conductive materials, uniaxial compression tests were performed using cement specimen with 0, 3, 5, 7% of carbon fiber to evaluate the effect of conductive material on the performance of grouting material. Based on the test results, the uniaxial compressive strength is increased with the mixed proportion of the carbon fiber increase. Furthermore, the carbon fiber can also affect on the early-strength of the grouting materials.

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

A Study about The Global Trend of Neo-Grouting Technology (최신 그라우팅 기술의 세계적인 동향에 관한 연구)

  • Kim, Jin-Chun;Kim, Sang-Gyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • This study researches on global technology trend in each of composing technology, such as grouting material, grouting equipment, and construction management technology, which grouting technology has been founded upon to improve relatively inadequate domestic grouting technology and to establish the global standard for overseas expansion in the future. As far as grouting material is concerned, while High-Penetration and High-Strength micro cement ($1.5{\mu}m$) has been developed in 2000's in Japan, JinChun Kim et al. (2014) has been developing hybrid type micro cement grouting material and examining specifications of different kinds of projects and countries to analyze the trend of grouting equipment development. The specification contains detailed requisite specification for materials, mixers, pumps, agitators, and packers and it has to satisfy the standard of different countries to win global contracts. Grouting management technology can be divided into four different generations and Scandinavian countries, such as Sweden, Norway, and Finland, Japan, and South Korea are recently doing vigorous researches on the Fourth generation which merges grouting technology with ICT.

Microbiological Quality Assessment of Kimbap According to Preparation and Cooking Condition and Identification of Critical Control Points in the Processes (김밥 조리조건에 따른 미생물 품질 평가와 중요관리점의 관찰)

  • 김종규
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • This study was performed to assess the microbiological quality of kimbap (rice balls rolled in laver) prepared in two conditions (normal condition or clean, sanitized condition) and to support a practical application to identify critical control points (CCPs) in the preparation and cooking processes of kimbap. Kimbap, raw materials of kimbap, utensils (knives, cutting board, and kimbal which is made of bamboo), and hands of food handlers were examined microbiologically. Airborne microbes in the kitchens were also evaluated. Escherichia coli, Salmonella and Staphylococcus aureus were not detected in all samples. The aerobic bacteria and coliform bacteria levels of all samples in clean, sanitized condition were much lower than those in normal condition. More aerobic bacteria and coliform bacteria were counted in unheated raw materials of kimbap than in heated raw materials. In both conditions, the levels of airborne microbes of the kitchens were satisfactory. The aerobic bacteria and coliform bacteria of kimbap prepared in clean, sanitized condition were one hundredth levels of those of kimbap prepared in normal condition. However, fecal coliforms were detected even in the kimbap prepared in clean, sanitized condition. The results indicate that microbiological contamination of kimbap may be mainly originated from the contaminated unheated raw materials, utensils, and hands of food handlers, and also possible cross-contamination during preparation. The CCPs for kimbap preparation and cooking were handling of unheated raw materials, cleaning and sanitizing utensils, and hand washing of food handlers.

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

Quality Control Method for the Concrete from Multiple Suppliers (콘크리트 혼합타설시 품질확보 방안)

  • Kim, Kyung-Hoon;Lee, Sang-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • Concrete mix design controls the various concrete properties such as workability and strength. Fresh concrete requires workability and the hardened concrete requires compressive strength. If using the concrete from different supplier concurrently, the concrete placed can show different properties unlike originally designed. However most of construction sites place the concrete from several companies. One of the predictable problems is whether the ultimate performance of concrete achieves the originally designed performance after placing the concrete from several companies. Therefore this research aims to keep the concrete quality in the above cases. This research has been done through literature review, questionnaire and the verification at the sample construction site. A literature review describes the general characteristics and quality control of concrete and a questionnaire describes the awareness and implementation of Korean Construction Specification(KCS). The production capacity and the delivery capacity of concrete suppliers is smaller than the daily quantity required on the sample site, therefore the placing of the concrete with different mixing ratio is inevitable and it can not keep the KCS. As a conclusion, this research proposed 5 alternatives and one of them has been adopted, i.e. to unify the concrete mix design of multiple concrete suppliers.

Comparative Analysis of Construction Productivity for Modernized Korean Housing (Hanok) (보급형 신한옥 개발을 위한 건설 생산성 분석)

  • Kim, Min;Kim, Yesol;Lee, YunSub;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2013
  • The interest in traditional Korean housing has greatly increasing in Korean housing market. However, it is difficult to wildly disseminate for a high construction cost reason. In order to effectively facilitate the Hanok construction, Korean government has initiated a project that develops a new style Korean housing, which meets the requirements of low cost and modernized life style. Cost of building is mainly affected by materials and construction methods. Hanok has some special commodities those significantly impact the cost. In order to effectively cut down the costs, well-organized planning for costs is very important. Also, improving the productivity by utilizing new materials and methods can result in cost down. In this context, this paper compared and analyzed two different types of Korean housing; one is a modernized Korean house which used new materials and methods, the other is a traditional Korean house which was build up by purely traditional methods. Productivity has also been compared and analyzed for 5 major commodities between two types of models. Based on these comparative data, effect of cost down by new model has been analyzed. As a result it is confirmed that by using the new materials and methods could highly effect to increasing productivity and cost down. Especially, the cost of Roofing have been more influenced by using new material while the Wood and Finishes have been influenced by new construction method. Construction cost of Foundation (Earthwork, Concrete, Masonry) and Openings were influenced both factors, changing of materials and methods.

A Changes of Traditional Landscape Architecture Materials in Yangdong Village, Gyeongju - Building Roof Materials in the Village Since the 1970s - (정비 사업을 통해 본 경주 양동마을 전통조경 재료의 변화양상 - 1970년대 이후 마을 내 건축물 지붕 소재를 중심으로 -)

  • Kim, Dong-Hyun;Lee, Jong-Sung;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.50-57
    • /
    • 2018
  • Based on research projects and maintenance plans that have been carried out to observe changes in the appearance of buildings in Yangdong Village, Gyeongju, this study analyzed the process of changes in roof materials since the 1970s and drew the following conclusions. First, as the proportion of houses used in the yanggi and yanggi in the 1970s appears similar to that of Wagawa, it is believed that the village landscape has changed due to the use of modern materials by modernization and urbanization. Second, the initial stage of readjustment was designated as a folk data protection zone in 1977 and important folk data designation in 1984. However, due to the lack of a budget for repair and indiscriminate repair, the effectiveness of the project did not seem to have been high. As a result, the trend of decreasing the initial price of the previous period and increasing the use of materials such as yanggi and slate were continuing. Third, in the 1990s, the Cultural Heritage Administration pushed for restoration to the traditional method through extensive renovation projects, making efforts to restore traditional materials, such as reduction of the yanggi and roof, removal of the Hamseok roof, and an increase in the price of grass. Fourth, in the 2000s and thereafter, various readjustment projects were completed in the previous period, with the ratio of Wagwa and Choga greatly increased and the number of houses on the roof of slate reduced by about half, and the level of maintenance of the village's retirement homes was readjusted after the World Heritage List in 2010.