• Title/Summary/Keyword: 재난시스템

Search Result 1,486, Processing Time 0.032 seconds

LSTM Prediction of Streamflow during Peak Rainfall of Piney River (LSTM을 이용한 Piney River유역의 최대강우시 유량예측)

  • Kareem, Kola Yusuff;Seong, Yeonjeong;Jung, Younghun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.17-27
    • /
    • 2021
  • Streamflow prediction is a very vital disaster mitigation approach for effective flood management and water resources planning. Lately, torrential rainfall caused by climate change has been reported to have increased globally, thereby causing enormous infrastructural loss, properties and lives. This study evaluates the contribution of rainfall to streamflow prediction in normal and peak rainfall scenarios, typical of the recent flood at Piney Resort in Vernon, Hickman County, Tennessee, United States. Daily streamflow, water level, and rainfall data for 20 years (2000-2019) from two USGS gage stations (03602500 upstream and 03599500 downstream) of the Piney River watershed were obtained, preprocesssed and fitted with Long short term memory (LSTM) model. Tensorflow and Keras machine learning frameworks were used with Python to predict streamflow values with a sequence size of 14 days, to determine whether the model could have predicted the flooding event in August 21, 2021. Model skill analysis showed that LSTM model with full data (water level, streamflow and rainfall) performed better than the Naive Model except some rainfall models, indicating that only rainfall is insufficient for streamflow prediction. The final LSTM model recorded optimal NSE and RMSE values of 0.68 and 13.84 m3/s and predicted peak flow with the lowest prediction error of 11.6%, indicating that the final model could have predicted the flood on August 24, 2021 given a peak rainfall scenario. Adequate knowledge of rainfall patterns will guide hydrologists and disaster prevention managers in designing efficient early warning systems and policies aimed at mitigating flood risks.

A Study on the Risk Assessment for Strengthening Management Safety of Hydrogen Fueling Station (수소충전소의 경영안전성 강화를 위한 위험성평가 추가 항목 연구)

  • Lee, Jang Won;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.520-531
    • /
    • 2022
  • Purpose: Based on the risk evaluation of hydrogen fueling stations, this study aims to find a plan to strengthen management safety by examining profitability and management risk, which are major concerns of employers. Method: The risk evaluation was divided into 'acceptable risk' and 'allowable risk' over time from the stage of installation of hydrogen fueling stations, and compared and analyzed with the results of existing studies. Result: Existing studies have been appropriately applied to the risk assessment performed at the stage of installing hydrogen fueling stations. However, possible risks could be found at the operational stage. In other words, it was derived that an evaluation of management risk was also necessary. And through this, it was confirmed that the safety of hydrogen fueling stations was strengthened. Conclusion: The risk assessment that precedes the stage of installing hydrogen fueling stations is appropriate because significant results have been derived from the 'acceptable risk' assessment. However, the operator needs to evaluate the risks that may occur at the operating stage, that is, the 'allowable risks' and prepare countermeasures. Therefore, it is proposed to add management risk assessment items to build and operate safer hydrogen fueling stations.

How to build an AI Safety Management Chatbot Service based on IoT Construction Health Monitoring (IoT 건축시공 건전성 모니터링 기반 AI 안전관리 챗봇서비스 구축방안)

  • Hwi Jin Kang;Sung Jo Choi;Sang Jun Han;Jae Hyun Kim;Seung Ho Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Purpose: This paper conducts IoT and CCTV-based safety monitoring to analyze accidents and potential risks occurring at construction sites, and detect and analyze risks such as falls and collisions or abnormalities and to establish a system for early warning using devices like a walkie-talkie and chatbot service. Method: A safety management service model is presented through smart construction technology case studies at the construction site and review a relevant literature analysis. Result: According to 'Construction Accident Statistics,' in 2021, there were 26,888 casualties in the construction industry, accounting for 26.3% of all reported accidents. Fatalities in construction-related accidents amounted to 417 individuals, representing 50.5% of all industrial accident-related deaths. This study suggests implementing AI chatbot services for construction site safety management utilizing IoT-based health monitoring technologies in smart construction practices. Construction sites where stakeholders such as workers participate were demonstrated by implementing an artificial intelligence chatbot system by selecting major risk areas within the workplace, such as scaffolding processes, openings, and access to hazardous machinery. Conclusion: The possibility of commercialization was confirmed by receiving more than 90 points in the satisfaction survey of participating workers regarding the empirical results of the artificial intelligence chatbot service at construction sites.

A Study on the Accessibility Requirements Analysis Model for the Preventive Safety and Disaster Service Information System - Focusing on the Communication Ability (정보시스템을 통한 생활안전 위험의 예방·대응을 위한 안전약자 요구사항 분석모델 연구 : 의사소통기능을 중심으로)

  • Lee, Yong-Jick;Ji, Seok-yeon;Kim, Sang-hwa
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.10 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • Objective : The purpose of this study is to present an analysis model in developing an inclusive response for safety hazards and disaster preventive information system for vulnerable people to the disaster including persons with disabilities, and those with specific needs. Methods : In this study, the persona analysis method is used to analyze fictitious characters that correspond to various characteristics such as age, disability, environment, occupation, etc. in terms of the scenario of some particular disaster subjects. Based on the user's communication problems derived from the persona analysis, focused group interview and ICF based analysis were implemented to identify needs and arbitration methods. Results : The needs from persona analysis and ICF-based communication items analysis identifies the factors that make each fictitious character difficult in terms of communication in obtaining the benefits consistent with the purpose of the service. The study derives service requirements that can provide arbitration or facilitation methods to increase communication ability of the users. Conclusion : Through the persona analysis method, difficulties that could occur when receiving disaster information using communication devices were identified and analyzed in conjunction with communication problems described in the ICF. In building information services for the prevention of safety hazards and disasters, this study presented a model that uses the persona analysis method and the ICF classification system to derive user requirements for accessible information system.

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

Identifying Characteristics of Incidents at Hazardous Material Facilities

  • Kim, Geun-Young;Kim, Sang-Won;Won, Jai-Mu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Safety and quality assessment systems are very important in manufacture, storage, transportation, and handling of hazardous materials(hazmat) to prevent hazmat disasters. At present, hazardous materials exist everywhere in our daily lives with various forms of plastics, household products of cleaning and washing detergents, fertilizers or petroleum-related products. However, hazardous materials are dangerous substances when they are released to human or environment. Hazardous materials become very widely used substances in the age of oil-based industrial economy. The Korean Ministry of Environment (KMOE) describes about one hundred thousand types of chemicals are produced and used worldwide. Over four hundred new chemicals are introduced in every year. A crucial question for the Korean hazardous material management may have been raised: Will you be safe from hazardous material incidents? The gas leak disaster at Union Carbide's Bhopal, India in 1984 that made over 6,400 people killed and 30,000 to 40,000 people seriously injured is the representative case for the safety of hazmat. Korea becomes vulnerable to hazmat disaster due to the development of high-tech industry. Thus, the risk assessment system is required to Korea for transferring abandoned hazmat management systems to self-correcting safety systems. This research analyzed characteristics of various hazmat incidents applying statistical analysis methods including frequency analysis or analysis of category data to hazmat incidents for ten years. All of three analyses of category data indicate the significance of causality between hazmat incident site groups and seasons, regional groups, and incident casualty groups.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.

Standard Metadata Design for Linkage and Utilization of Damage Prediction Maps (풍수해 피해예측지도 연계·활용을 위한 표준 메타데이터 설계)

  • SEO, Kang-Hyeon;HWANG, Eui-Ho;BAECK, Seung-Hyub;LIM, So-Mang;CHAE, Hyo-Sok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.52-66
    • /
    • 2017
  • This study aims at designing standard metadata that can be incorporated for advanced utilization of damage prediction maps, and thereby constructing the standard meta-information management prototype system on the basis of the proposed design. Based on the ISO/TC 211 19115 international standard, which is considered as the most widely used standard (as per the results of a domestic and foreign metadata standard survey), the designing process for the standard metadata was established and the metadata was categorized into nine classes. Additionally, based on the output of the standard metadata design process, a standard meta-information management prototype system, capable of checking and downloading meta-property information, was constructed using the JAVASCRIPT language. By incorporating the obtained results, it is possible to maintain the quality of the constructed damage prediction map by establishing a standardized damage prediction map database. Furthermore, disaster response can be actuated through the provision and management of data for effective operation of the proposed damage prediction system.