• Title/Summary/Keyword: 재난방지

Search Result 284, Processing Time 0.019 seconds

Influence of the Levee-burning on the Fauna of Insect Pests and Their Natural Enemies (쥐불놀이 (논둑태우기)가 해충 및 천적상에 미치는 영향)

  • 김홍선;이영인;이해빈
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.209-215
    • /
    • 1990
  • Some preliminary studies were conducted to find out whether the levee-burning could justifiable for the suppression of insect pests, particularly the smaller brown planthopper (Laodelphax striatellus F.). Density surveys on pests and their enemies (mostly spiders) were carried out upto the mid May at an experimental paddy field located in Suwon after of it's levee $(72\times1m)$ was burned on Feb. 20, 1987. Results were discussed in relation to density recovering of both pests and their possible enemies (spiders) and summarized as below. Not a single individual of any pest or enemy was found from the levee upto sometime after the levee-burning. Grasses started to grow more vigorously in burned ares than in unburned upto about 60 days after the burning. And densities of both pest and enemies grew higher in burned areas than in unburned from about 75 days after the burning (in Early may). It is suspected that all individuals of pests and enemies fond from the burned areas could have immigrated from the surrounding areas. If levee-burning was carried out in much wider areas, much longer time would be needed to recover the density of both pests and enemies to the center region of the burning. Wingless spiders would require even longer time than winged pest species to re-establish in the center region of the widely burned field. Pirata subpiraticus, the most abundant spider species in Korean paddy fields, starts to move about and searches for food at above $9^{\circ}C$ which is somewhat lower than the critical temperature for the pest species. Thus P. subpiraticus would require more food than other pest species early in the spring, and therefore, it would have lower probability to survive than pest species particularly in burned areas. Experiments for pest suppression with levee-burning would better be carried on in much wider areas, and its justification seems to be discussed after man other disciplines related to both pests and their natural enemies were throughly studied together with their density surveys. However, according to the present point of vie, the opinion that levee-burning is helpful for controlling pests which over winter on levee areas could not be justifiable.

  • PDF

Release Strategy for the Red Fox (Vulpes vulpes) Restoration Project in Korea Based on Population Viability Analysis (개체군 생존력 분석을 이용한 여우복원사업 방사전략)

  • Lee, Hwa-Jin;Lee, Bae-Keun;Kwon, Gu-Hui;Chung, Chul-Un
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.417-428
    • /
    • 2013
  • The red fox (Vulpes vulpes), listed as a Class I endangered species by the Ministry of Environment of Korea, has been considered to be extinct in South Korea since the 1980s, and an intensive restoration project has been underway in Sobaeksan national park. This study was carried out to develop a suitable model for the red fox reintroduction program based on Population viability analysis (PVA) by using the VORTEX program. If 10 animals (5 females and 5 males) were continuously released into the initial zero population every year for 10 years, population growth rate and extinction probability over the next 50 years after the introduction of the population were $0.018{\pm}0.204$ and 0.354, respectively; the maximum population size was 116.34 at the 16th year after the first release, and a reduction rate of 1.22 every year from the 17th year was inferred. We found that additional releases would be needed from the 17th year after the initial release to maintain a positive growth rate and to prevent the extinction of the released red foxes, and releasing more than 12 individuals every year would be needed for the long-term, continuous existence of red foxes. By contrast, if fewer than 6 red fox individuals were released the extinction probability over the next 50 years was more than 80%. To maintain the minimum population growth rate, the release of more than 8 individuals were needed for positive population growth. The population growth rate was more stable when 10 animals in the change of their sex rate every year from the set value were released as the female-to- male sex ratio of 6:4 rather than 1:1. However, if the female-biased sex ratio was increased by more than 7:3, a negative population growth was expected. The occurrence rate of roadkill and poaching are important factors in the red fox restoration project. The extinction probability was decreased to 30% if each factor was decreased to 3% based on the standard baseline; however, if each factor was increased to more than 3%, an extinction rate of about 90% was reached over the next 50 years.

A Long-term Variability of the Extent of East Asian Desert (동아시아 사막 면적의 경년변화분석)

  • Han, Hyeon-Gyeong;Lee, Eunkyung;Son, Sanghun;Choi, Sungwon;Lee, Kyeong-Sang;Seo, Minji;Jin, Donghyun;Kim, Honghee;Kwon, Chaeyoung;Lee, Darae;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.869-877
    • /
    • 2018
  • The area of desert in East Asia is increasing every year, and it cause a great cost of social damage. Because desert is widely distributed and it is difficult to approach people, remote sensing using satellites is commonly used. But the study of desert area comparison is insufficient which is calculated by satellite sensor. It is important to recognize the characteristics of the desert area data that are calculated for each sensor because the desert area calculated according to the selection of the sensor may be different and may affect the climate prediction and desertification prevention measures. In this study, the desert area of Northeast Asia in 2001-2013 was calculated and compared using Moderate Resolution Imaging Spectroradiometer (MODIS) and Vegetation. As a result of the comparison, the desert area of Vegetation increased by $3,020km^2/year$, while in the case of MODIS, it decreased by $20,911km^2/year$. We performed indirect validation because It is difficult to obtain actual data. We analyzed the correlation with the occurrence frequency of Asian dust affected by desert area change. As a result, MODIS showed a relatively low correlation with R = 0.2071 and Vegetation had a relatively high correlation with R = 0.4837. It is considered that Vegetation performed more accurate desert area calculation in Northeast Asian desert area.

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.