• Title/Summary/Keyword: 재난방재관리

Search Result 503, Processing Time 0.02 seconds

A Study on a Method for Fire Suppression in a Central Area inside the Roof of a Wooden Cultural Property using a Gas Extinguishing Apparatus (가스소화설비를 이용한 목조 문화재 적심부 화재진압 방법에 관한 연구)

  • Kim, Hyunsung;Kim, Byung Sean;Cho, Woncheol;Lim, Yun Mook
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • This study was conducted to provide a method for fire suppression in a central area inside the roof of a wooden cultural property using a gas extinguishing apparatus, which is used as one of fire suppression methods with view to preventing valuable wooden properties inherited from ancestors from being destructed by fire. For a wooden property, it is very difficult to suppress fire when combustion spreads to a central area inside its roof, so it is impossible to put out a fire without destructing it. Such a fire fighting apparatus as a sprinkler, etc., installed in modern structures, is very effective, but the possibility of damaging a cultural property is highly probable after installment and operation, which leads to its low adaptability to a wooden property. Thus, the necessity of developing a fire suppress ion apparatus was raised to minimize the said problem and to obtain the desired results, and the need of making a plan on the installment was also raised based on the results of a test whose validity was proven. The central area inside a roof is a traditional - architectural style which is found in Korean wooden structures only, so it is impossible to discover similar cases in foreign countries. For this reason, this study was conducted to verify the effectiveness by developing a fixed fire suppression apparatus designed considering the speed and effectiveness in fire suppression. This study was sequentially carried out in the following steps. First, a frame for this study was made and the specific plan on a fire suppression method was established. Then, a fire suppression apparatus was installed. In the first step, the effectiveness for fire suppression was tested by installing valve open - punched - main water pores, and in the second step, the same effectiveness was tested by valve opened - punched - injection ports. For a wooden property similar to "Sungnyemun"(Gate of Exalted Ceremonies), its central area of the roof decides whether the fire suppression is successful or not, so the opinions on how to put out a fire were presented in this study, and thus the objective data to establish a method on fire suppression in a wooden structure(cultural property) was secured. Lastly, a scientific verification in the effectiveness for fire suppression measures was presented by installing a gas - fixed fire suppression apparatus.

  • PDF

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화 대응을 위한 발전소 온배수 활용 양식업 경제성 분석)

  • Lee, Sangsin;Kim, Shang Moon;Um, Gi Jeung
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • In order to resolve the problem of change in global climate which is worsening as days go by and to preemptively cope with strengthened restriction on carbon emission, the government enacted 'Framework Act on Low Carbon Green Growth' in 2010 and selected green technology and green industry as new national growth engines. For this reason, the necessity to use the un-utilized waste heat across the whole industrial system has become an issue, and studies on and applications of recycling in the agricultural and fishery fields such as cultivation of tropical crops and flatfishes by utilizing the waste heat and thermal effluent generated by large industrial complexes including power plants are being actively carried out. In this study, we looked into the domestic and overseas examples of having utilized waste heat abandoned in the form of power plant thermal effluent, and carried out economic efficiency evaluation of sturgeon aquaculture utilizing thermal effluent of Yeongwol LNG Combined Cycle Power Plant in Gangwon-do. In this analysis, we analyzed the economic efficiency of a model business plan divided into three steps, starting from a small scale in order to minimize the investment risk and financial burden, which is then gradually expanded. The business operation period was assumed to be 10 years (2012~2021), and the NVP (Net Present Value) and economic efficiency (B/C) for the operation period (10 years) were estimated for different loan size by dividing the size of external loan by stage into 80% and 40% based on the basic statistics secured through a site survey. Through the result of analysis, we can see that reducing the size of the external loan is an important factor in securing greater economic efficiency as, while the B/C is 1.79 in the case the external loan is 80% of the total investment, it is presumed to be improved to 1.81 when the loan is 40%. As the findings of this study showed that the economic efficiency of sturgeon aquaculture utilizing thermal effluent of power plant can be secured, it is presumed that regional development project items with high added value can be derived though this, and, in addition, this study will greatly contribute to reinforcement of the capability of local governments to cope with climate change.

  • PDF

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.