메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter)추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여 생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다. 제안된 알고리즘은 k-NN 분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.
본 논문에서는 SeqGAN 모델을 사용하여 한국어 시를 자동 생성해 보았다. SeqGAN 모델은 문장 생성을 위해 재귀 신경망과 강화 학습 알고리즘의 하나인 정책 그라디언트(Policy Gradient)와 몬테카를로 검색(Monte Carlo Search, MC) 기법을 생성기에 적용하였다. 시 문장을 자동 생성하기 위한 학습 데이터로는 사랑을 주제로 작성된 시를 사용하였다. SeqGAN 모델을 사용하여 자동 생성된 시는 동일한 구절이 여러번 반복되는 문제를 보였지만 한국어 텍스트 생성에 있어 SeqGAN 모델이 적용 가능함을 확인하였다.
전위그래프와 버블정렬그래프는 스타그래프가 갖는 노드대칭성, 재귀적구조, 최대 고장허용도 등 그래프이론 관점에서 좋은 성질을 갖는 상호연결망이다. 본 논문에서는 버블정렬(bubblesort)그래프 $B_n$와 버블정렬-스타(bubblesort star)그래프가 전위(Transposition) 그래프 $T_n$의 서브그래프임을 보인다. 또한, 전위(Transposition)그래프 $T_n$을 버블정렬(Bubblesort)그래프 $B_n$으로 임베딩하는 연장율이 O(n)임을 보인다.
본 연구는 풍력발전의 합리적인 운영 계획과 에너지 저장창치의 용량산정을 위한 풍력 발전량을 예측한다. 예측을 위해 물리적 접근법과 통계적 접근법을 결합하여 풍력 발전량의 예측 방법을 제시하고 풍력 발전의 요인을 분석하여 변수를 선정한다. 선정된 변수들의 과거 데이터를 수집하여 딥러닝을 이용해 풍력 발전량을 예측한다. 사용된 모델은 Bidirectional LSTM(:Long short term memory)과 CNN(:Convolution neural network) 알고리즘을 결합한 하이브리드 모델을 구성하였으며, 예측 성능 비교를 위해 MLP 알고리즘으로 이루어진 모델과 오차를 비교하여, 예측 성능을 평가하고 그 결과를 제시한다.
본 논문은 추적-후-탐지 처리(TBD: Track Before Detect)를 위한 레이더용 파티클 필터(Particle filter)에 대해서 기술한다. TBD 기법은 강한 클러터 환경, 작은 RCS 타겟 및 스텔스 타겟 등으로 인해 타겟 탐지가 어려운 경우(낮은 SNR)에 적용하는 기술이다. 특히 파티클 필터는 재귀적 TBD(Recursive TBD) 알고리즘 구현에 적합하고, 비선형 모델을 가우시안 선형 모델로 근사화해서 추정하는 칼만 필터 대비, 상대적으로 개선된 정확도를 갖는다. 본 논문에서는 다수의 관측값(클러터 포함)들이 동시에 수신될 때, 신호강도-거리-도플러 정보를 활용하여 파티클 필터 가중치를 직접 계산 및 갱신하는 방식을 제안한다. 성능 분석을 위해 가상의 레이더 시뮬레이션 사니리오를 설정하고, 제안하는 파티클 필터를 적용하여 추적 필터의 추정오차를 분석한다.
본 논문에서는 업데이트 기록에 기반한 모듈단위 포인터 분석 알고리즘을 제안한다. 여기서 모듈이란 상호 재귀적인 함수들의 집합을 의미하며, 모듈단위 분석이란 한 모듈을 분석 시에 다른 모듈의 소스코드가 필요하지 않는 분석을 의미한다. 일반적으로 이러한 형태의 분석은 분석 대상 모듈의 호출 문맥을 알 수 없는 상태에서 분석을 수행하여야 하기 때문에, 프로그램의 흐름 또는 호출 문맥에 관련하여 분석의 정확도를 잃을 수 있다. 본 논문에서는 업데이트 기록이라 이름지어진 모듈단위 분석 공간을 고안하여, 프로그램 문맥과 흐름에 민감한 정확도를 가지는 모듈단위 포인터 분석 방법을 제안한다. 업데이트 기록은 함수의 호출 문맥에 독립적으로 메모리 상태를 요약할 수 있을 뿐만 아니라, 메모리 반응이 일어난 순서에 관한 정보를 유지할 수 있다. 업데이트 기록의 이러한 특성은 모듈단위 분석을 정형화하는데 효과적으로 사용되었을 뿐만 아니라, 분석의 정확도를 높이기 위해 죽은 메모리 반응 또는 관련된 별칭 문맥을 구분하는 데에도 효과적으로 사용될 수 있었다.
ISO/IEC MPEG과 ITU-T VCEG이 공동으로 구성한 JCT-VC (Joint Collaborative Team on Video Coding)가 표준화를 진행한 HEVC (High Efficiency Video Coding)는 H.264/AVC 대비 약 2배 혹은 그 이상의 압축효율을 목표로 표준화가 시작되었다. 하지만, 계층적 구조를 갖는 가변크기 블록의 사용과 재귀적 부호화 구조에 따른 인코더의 복잡도 증가는 개선해야 할 문제점으로 지적되고 있다. HEVC 인코더의 복잡도를 감소시키기 위하여 다양한 고속화 알고리즘들이 제안되고 있으나, 고속화 알고리즘으로 얻을 수 있는 속도 향상만으로 HEVC 인코더의 실시간성을 확보하기에는 어려움이 있다. 본 논문에서는 현재 표준화가 완료된 HEVC 인코더의 실시간 구현을 위하여 SIMD 명령어를 이용한 데이터 수준 병렬화 기법, CPU 및 GPU를 이용한 멀티스레딩 기법과 같은 다양한 병렬화 기법을 소개한다. 또한, 이러한 병렬화 기법들을 HEVC 인코더에 적용하기 위해 적합한 연산 및 기능 모듈에 대하여 소개한다. 본 연구에서 제안한 방법을 HM (HEVC reference model) 10.0에 적용한 결과 $832{\times}480$ 영상의 경우 20~30fps의 부호화 속도를 나타냈으며, $1920{\times}1080$ 영상의 경우 5~10fps의 부호화 속도를 나타내었다.
최근 실내 위치측위 기술을 이용하여 다양한 서비스가 이루어지고 있다. 실내 위치측위 방식에는 대표적으로 fingerprinting 방식과 삼변측량 방식이 있으나 활용의 제한성 및 위치추정 오차 등의 문제점이 있다. 이러한 문제점을 해결하기 위해 기존의 측위 방식인 AOA, TOA, TDOA 등의 측위 기술을 응용한 연구가 진행되고 있다. 본 논문에서는 실내 환경에서 RSSI 차이를 이용한 AOA 기반 위치 추정 알고리즘에 대해 연구한다. 4개의 안테나를 가지는 하나의 AP를 가정하여 연구를 진행하며, RSSI를 기반으로 도래각을 추정 후 AOA 알고리즘에 적용한다. RSSI의 보정을 위해 재귀식 평균 필터를 이용하며, 도래각 추정을 위해 보정된 RSSI와 피타고라스 정리를 이용한다. 실험 결과 좁은 간격으로 배치된 4개의 무지향성 안테나의 방사 패턴으로 인하여 18%의 오차율을 보였으며, 지향성 안테나를 이용할 경우 실내 환경에서 AOA 알고리즘을 활용할 수 있을 것으로 판단된다.
자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.
이 논문에서는 임의의 블록 길이 n과 메시지 길이 k를 갖는 Reed-Solomon (RS) 부호를 연속적으로 복호하도록 프로그램 될 수 있는 가변형 RS 복호기의 효율적인 구조를 제안한다. 이 복호기는 단축형 RS 부호의 복호를 위해 영을 삽입할 필요가 없도록 하며, 변수 n과 k, 결과적으로 에러정정 능력 t의 값들을 매 부호어 블록마다 변화시킬 수 있다. 복호기는 수정 유클리드 알고리즘(modified Euclid's algorithm; MEA)을 기반으로 한 3단계 파이프라인 처리를 수행한다. 각 단계는 분리된 클럭에 의해 구동될 수 있으므로 단계 2 그리고/또는 단계 3에 고속 클럭을 사용함으로써 단지 2단계의 파이프라인 처리로 동작시킬 수 있다. 또한 입출력에서 서로다른 클럭을 사용하는 경우에도 사용할 수 있다. 각 단계는 가변 블록 길이를 갖는 RS 부호를 복호하기에 적합한 구조를 갖도록 설계되었다. 변화하는 t 값을 위해 MEA의 새로운 구조가 설계된다. MEA 블록에서 천이 레지스터들의 동작 길이는 하나 감소되었으며, t의 서로 다른 값에 따라서 변화될 수 있다. 간단한 회로로써 동작 속도를 유지하기 위해 MEA 블록은 재귀적 기법과 고속 클럭킹 기법을 사용한다. 이 복호기는 버스트 모드 뿐 아니라 연속 모드로 수신된 부호어를 복호할 수 있으며, 과 가변성으로 인해 다양한 분야에서 사용될 수 있다. GF($2^8$) 상에서 최대 10의 에러정정 능력을 갖는 가변형 RS 복호기를 VHDL로 설계하였으며, FPGA 칩에 성공적으로 합성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.