• Title/Summary/Keyword: 재굴착

Search Result 230, Processing Time 0.025 seconds

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

Substructure Evaluation of Pavement due to Excavation and Recompaction Sequences for Pipe Installation (굴착, 관 매입 및 다짐 연속과정에 따른 포장하부구조 강성펑가)

  • Lim, Yu-Jin;Park, Jae-Beom
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2009
  • Pipe installation following excavation of pavement and underlying-soils induces settlements, cracks and bad roughness near utility cut. This study is to use PMT and LDWT in order to evaluate stiffness and/or degree of compaction of sublayers and backfill in utility cut section because no specially designed efforts for evaluating stiffness condition of the substructures below new pavement after pipe installation are offered at this time. From test results of PMT, comparable stiffness and/or degree of compaction in recompaction process is not obtained comparing to that of the existing sublayers before excavation. Thickness of the new surface layer after pipe installation must be designed thicker than that of the existing surface layer. It is verified that LDWT comparing to PMT is effective only to get stiffness and/or degree of compaction within limited depth from surface of materials, but it is not useful to evaluate stiffness of substructures in full depth in case of utility cut.

  • PDF

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

The deformation behavior of soil tunnels reinforced with RPUM and fiberglass pipes (RPUM과 유리섬유 파이프로 막장을 보강한 토사터널의 변형거동)

  • Nam, Gi-Chun;Heo, Young;Kim, Chi-Whan;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2002
  • In this paper, deformation behavior of shallow subway tunnel excavated in weathered soil and reinforcement effects of longitudinal support measures are investigated via three dimensional FDM analysis. Two excavation methods, half-face excavation and full-face excavation, are considered in simulation to study the influences of excavation methods on tunnel deformation behavior. In addition, the reinforcing effects of RPUM and fiberglass pipe are compared. Face extrusion, covergence, preconvergence, and sidewall displacement are investigated to analyze tunnel deformation behavior, and surface settlement is used to analyze the effects of excavation methods and longitudinal supports measures. The simulation results show that half-face excavation induces larger convergence, preconvergence, sidewall displacement, surface settlement than full-face excavation, while full-face excavation induces larger extrusion than half-face excavation. In addition, under same excavation method, all displacements are larger when RPUM is only used for longitudinal support than when RPUM is jointly used with fiberglass pipes.

  • PDF

터널

  • 김교원;김학준;노병돈;이현범
    • Proceedings of the KSEG Conference
    • /
    • 2004.03a
    • /
    • pp.21001-21090
    • /
    • 2004
  • 지반에 터널을 굴착하는 경우 지중 응력은 교란되게 되며 굴착면 근처에서는 응력이 재분포하게 된다. 그러므로 굴착면 주변의 응력분포를 알기 위해서는 굴착 전의 지중 응력을 측정하거나 예측해야 한다. Hoek과 Brown(1980)은 여러 지역에서 수집한 지중 응력의 실측자료를 그림2.1-1과 그림 2.1-2와 같이 나타내었다. 그림2.1-1에 의하면 다음 식에서 수직응력 ($\sigma_z$)이 단위 중량($\gamma$)과 심도(z)에 의해서 예측하는 값과 잘 일치하고 있음을 보여준다. (중략)

  • PDF

Engineering Properties of Controlled Low Strength Material for Sewer Pipe by Standard Soil Classification (표준토 조건별 하수관용 유동화 채움재의 공학적 특성)

  • Lee, Jun;Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • Controlled low strength material(CLSM), known as flowable fill is used sewer. This paper evaluates flowability, segregation, early strength and excavatability of CLSM made using standard soils such as SM, ML, CL, CH. Also, various mix proportions of CLSM containing kaolinite, red soil, Joomun Jin standard soil were developed and the mixing ratio optimized. It was considered as the flowability and early strength were severly affected by W/B, S/B, and early strength and flowability depend on standard soils which means the satisfaction conditions of CLSM were variety of standard soil conditions. Finally, not only optimal mixing proportions were deducted according to standard soil condition but confirmed effectiveness of bleeding and excavatability.

Study on Structural Stability Analysis of Excavation Stage Considering Excavation Process and Supporting Materials in Room-and-Pillar Underground Space (격자형 지하공간에서 굴착 공정과 지보재를 고려한 굴착 단계별 구조 안정성 해석 연구)

  • Soon-Wook, Choi;Soo-Ho, Chang;Tae-Ho, Kang;Chulho, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2022
  • The room-and-pillar method or grid-type underground space is a method of forming a space by excavating the excavation part at regular intervals so that it is orthogonal and using natural rock mass as a structure. Such excavation may appear different in size from the excavation stage where the maximum displacement occurs depending on the excavation direction and sequence. In this study, considering the installation of support materials such as shotcrete and rock bolts for the optimal design of the excavation process, the safety and constructability of the design and construction of the grid-type underground space under specific ground conditions were analytically reviewed. The ground conditions were set using an numerical method, and the stress at pillar and displacement at center of room were considered for each excavation stage and construction type under a constant surcharge. The height of the space was 8m, which was set higher than the size of a general office, and was reviewed in consideration of equipment and plant facilities. In addition, the degree of displacement control according to the installation of support materials was reviewed in consideration of shotcrete and rock bolts.

Engineering Characteristics Assessment of Rapid Set Controlled Low Strength Material for Sewer Pipe Using Excavated Soil (굴착토를 활용한 속경성 유동성 채움재의 공학적 특성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • In this study, engineering characteristics such as flowability, segregation and compressive strength by age to derive fast hardening material mixing proportion using excavated soil. And based on optimal mixing proportion, field simulation experiment conducted in laboratory to examine the effectiveness of the method such as kelly ball drop test and soil penetration test for reviewing the following process. As as a result of evaluation, in case of kelly ball drop test and soil penetration test were securing the following process initiation time 3 hours after place CLSM. As results of these assessments, kelly ball drop test and soil penetration test were applicable for revewing following process in construction field besides unconfined compressive strength method.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.