• Title/Summary/Keyword: 재굴착

Search Result 231, Processing Time 0.029 seconds

A Case Study on the Self-Supported Earth Retaining Wall with Different Formations (다양한 형태의 2열 자립식 흙막이 공법 시공사례 연구)

  • Sim, Jae-Uk;Kim, Kyoung-Chul;Son, Sung-Gon;Park, Young-Jin;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1039-1049
    • /
    • 2010
  • Excavation support systems are the temporary earth retaining structures that can prevent the lateral movement of soils. The systems are initially performed before other construction operations and have a great impact on the entire construction period. The temporary support system in Korea have been carried out generally along with installing supports, which are struts, tiebacks, and rakers. However, most of existing support systems in application relatively have limitations such as cost increase, construction configuration, and displacement occurred with support systems. Thus, a new retaining support system (referred to as the SSR, New Construction Technology No. 533) was developed to solve the aforementioned problems. This study introduces the design, construction, and maintenance of the SSR system under the different construction conditions. The behavior and characteristics of the SSR system were identified based on the case studies.

  • PDF

Optimal Mixture Contents of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중전력구조물 급결성 유동화 뒷채움재의 최적배합비)

  • Cheon, Seon-Ho;Jeong, Sang-Seom;Lee, Dae-Soo;Cho, Hwa-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.395-404
    • /
    • 2005
  • This study is to evaluate the physical and mechanical characteristics of flowable backfill and search for the optimal mixture contents of it used for constructing underground power utilities. flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. The flowable slurry mixture made with 9 types of soil and 6 types of accelerated mixtures in the laboratory were evaluated for bleeding, flowability, heat resistance, and unconfined compressive strength to meet the aim values of this study.

  • PDF

Influence of limestone cavity on tunnel stability (석회암 공동이 터널의 안정에 미치는 영향)

  • Jin, Seong-Kyu;Yang, Moon-Sang;Choi, Deog-Chan;Park, Kwang-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • This study is focused on establishing influence zone caused by tunnelling in limestone site. Therefore, the numerical analysis using the FLAC2D was performed considering various locations and magnitudes of cavities. To reduce the stress concentration, the shape of cavities was designed to ellipse. This parametric study reveals that the cavities located at crown part and edge part of tunnel greatly have influenced on stability of tunnel. The effect of distance between tunnel and cavity which is larger than 1-0D (Tunnel diameter) dose not directly related to stability of tunnel, but the nearer a cavity location was, the larger displacement and stress of reinforcement occured within 0.25D.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF

Case Study of Pipe Leak Detection Using Artificial Intelligence (인공지능(AI) 기반 상수도 누수탐사 사례 분석)

  • Tae Nam Moon;Chang Gun Shin;Bo Hyang Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.496-496
    • /
    • 2023
  • 상수도관의 노후화 등으로 발생하는 누수는 안정적인 급수운영을 저해하고 경제적 손실을 발생시킬 뿐만 아니라 지반 침하 등 2차 피해가 발생할 수 있다. 상수도관 누수는 배관 내·외부 부식으로 발생하는 핀홀(Pin Hole)로 인한 관통누수, 강관 용접 시 발생하는 시공불량, 볼트 및 고무패킹 등 부자재의 노후화, 굴착 등 작업에서 발생하는 물리적 충격 등 여러 원인으로 발생할 수 있다. 상수도관에서 누수가 발생할 경우, 관 내부수가 관 밖으로 유출되어 발생하는 파열음, 유출수와 지반과의 마찰로 인한 진동 및 소음 등이 발생할 수 있다. 청음식, 상관식 누수탐사와 같은 기존 누수탐사 방식은 전문가의 경험에 대한 의존도가 매우 높으며, 기존 장비의 특성상 비금속관 및 대구경관 등 특정 환경에서는 적용이 어려우며, 효율적인 탐사가 쉽지 않은 실정이다. 이에 대한 해결책으로 본 논문에서는 상수도 누수가 의심되는 구간을 대상으로 실시간 누수음 데이터 수집 및 인공지능(Artificial Intelligence) 분석을 실시하여 기존 조사방법보다 효율적이고 신뢰성 있는 누수탐사를 수행한 사례를 분석하고자 한다.

  • PDF

Shaft Resistance Characteristics of Rock-Socketed Drilled Shafts Based on Pile Load Tests (현장 말뚝재하시험을 통한 암반에 근입된 현장타설말뚝의 주면마찰력 결정)

  • Seol, Hoon-Il;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.51-63
    • /
    • 2007
  • Behavior of rock-socketed drilled shafts subjected to axial load was investigated on the basis of pile load tests. The emphasis was laid on analyzing the shear load transfer characteristics from the shafts to surrounding rock. Field load tests were performed on nine test shafts under various conditions such as weathering of rock mass, borehole roughness, pile diameters, and loading directions. The borehole roughness at each test site was profiled using a laser borehole profiler. In order to evaluate and to propose ultimate shaft resistance($f_{max}$) of drilled shafts in rock of Korean peninsular, also, database of pile load tests was developed by reviewing various literature and technical reports.

3-Dimensional numerical analysis on support performance of early-high-strength shotcrete (3차원 수치해석을 이용한 조기고강도 숏크리트 지보성능 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Cho, Young-Jae;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.459-470
    • /
    • 2014
  • Now-a-days, the trend in constructing tunnels is to build more deeper, more longer tunnels of greater cross-sections. That's why, the demand of "Early-high-strength shotcrete" is very high because of their advantage of attaining higher strength immediately after excavation, which controls the ground subsidence. So, this study reveals the supporting phenomena of early-high-strength shotcrete, using three-dimensional numerical analysis. The crux of this study can be applied practically in construction sites also. Support Performance of two different qualities of shotcrete was checked out, by keeping the general shotcrete's thickness constant and comparing it with early-high-strength shotcrete's thickness decreasing it gradually in five steps, and analysing/comparing the support performance in all cases. Effect of using early-high-strength shotcrete was analysed to save the cost of steel sets, which are widely used for supporting the ground before the hardening of general shotcrete. The results of numerical analysis on the performance of early-high-strength shotcrete show that, it behaves more effectively under worse ground conditions and it can support the ground more conveniently than steel sets, before the shotcrete is hardened.

A Study for on Application of Bamboo Soil Nailing System (대나무 쏘일네일링의 적용성에 관한 연구)

  • Bang Yoon-Kyung;Kim Hong-Taek;Yoo Si-Dong;Yoo Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.31-40
    • /
    • 2005
  • In this study, a newly modified soil nailing technology which uses bamboo, rich natural material growing in southern areas, is developed to prevent the soil pollution and to overcome the difficulty of excavation near existing structures. Experimental and analytical studies were performed to confirm application possibility of bamboo taking the place of existent reinforcement material, that is steelbar, FRP and etc. In experimental study, strength characteristics of bamboo material were analyzed, and pull-out resistance of bamboo soil nailing system by field pull-out tests was examined. In analytical study, limit equilibrium analysis and displacement analysis were performed, and application possibility of bamboo soil nailing system was analyzed. As the result of this study, bamboo has comparatively good strength and pull-out resistance characteristics. It is expected that bamboo can be used as satisfactory reinforcement material by selecting bamboo with reguired diameter and by controlling the number of bamboo strips. Bamboo is an alternative for the reinforcement of soil nailing system, especially temporary support system in excavation near the existing structures.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF