• 제목/요약/키워드: 장.단기 기억망

검색결과 2건 처리시간 0.015초

문서의 감정 분류를 위한 주목 방법 기반의 딥러닝 인코더 (An Attention Method-based Deep Learning Encoder for the Sentiment Classification of Documents)

  • 권순재;김주애;강상우;서정연
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.268-273
    • /
    • 2017
  • 최근 감정 분류 분야에서 딥러닝 인코더 기반의 접근 방법이 활발히 적용되고 있다. 딥러닝 인코더 기반의 접근 방법은 가변 길이 문장을 고정 길이 문서 벡터로 압축하여 표현한다. 하지만 딥러닝 인코더에 흔히 사용되는 구조인 장 단기 기억망(Long Short-Term Memory network) 딥러닝 인코더는 문서가 길어지는 경우, 문서 벡터 표현의 품질이 저하된다고 알려져 있다. 본 논문에서는 효과적인 감정 문서의 분류를 위해, 장 단기 기억망의 출력을 중요도에 따라 가중합하여 문서 벡터 표현을 생성하는 주목방법 기반의 딥러닝 인코더를 사용하는 것을 제안한다. 또한, 주목 방법 기반의 딥러닝 인코더를 문서의 감정 분류 영역에 맞게 수정하는 방법을 제안한다. 제안하는 방법은 윈도우 주목 방법(Window Attention Method)을 적용한 단계와 주목 가중치 재조정(Weight Adjustment) 단계로 구성된다. 윈도우 주목 방법은 한 단어 이상으로 구성된 감정 자질을 효과적으로 인식하기 위해, 윈도우 단위로 가중치를 학습한다. 주목 가중치 재조정에서는 학습된 가중치를 평활화(Smoothing) 한다, 실험 결과, 본 논문에서 제안하는 방법은 정확도 기준으로 89.67%의 성능을 나타내어 장 단기 기억망 인코더보다 높은 성능을 보였다.

RNN모델에서 하이퍼파라미터 변화에 따른 정확도와 손실 성능 분석 (Analysis of Accuracy and Loss Performance According to Hyperparameter in RNN Model)

  • 김준용;박구락
    • 융합정보논문지
    • /
    • 제11권7호
    • /
    • pp.31-38
    • /
    • 2021
  • 본 논문은 감성 분석에 사용되는 RNN 모델의 최적화를 얻기 위한 성능분석을 위하여 하이퍼파라미터 튜닝에 따른 손실과 정확도의 추이를 관찰하여 모델과의 상관관계를 연구하였다. 연구 방법으로는 시퀀셜데이터를 처리하는데 가장 최적화된 LSTM과 Embedding layer로 히든레이어를 구성한 후, LSTM의 Unit과 Batch Size, Embedding Size를 튜닝하여 각각의 모델에 대한 손실과 정확도를 측정하였다. 측정 결과, 손실은 41.9%, 정확도는 11.4%의 차이를 나타내었고, 최적화 모델의 변화추이는 지속적으로 안정적인 그래프를 보여 하이퍼파라미터의 튜닝이 모델에 지대한 영향을 미침을 확인하였다. 또한 3가지 하이퍼파라미터 중 Embedding Size의 결정이 모델에 가장 큰 영향을 미침을 확인하였다. 향후 이 연구를 지속적으로 이어나가 모델이 최적의 하이퍼파라미터를 직접 찾아낼 수 있는 알고리즘에 대한 연구를 지속적으로 이어나갈 것이다.