• Title/Summary/Keyword: 장주기화

Search Result 6, Processing Time 0.017 seconds

장주기 핵연료의 개발현황

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • v.8 no.1 s.59
    • /
    • pp.64-67
    • /
    • 1988
  • 현재 미국에서는 핵연료교체의 장주기화와 고연소도를 추구하는 경향이 있다. WH사는 이러한 추세에 부응하여 피복재질의 개량과 함께 새로운 형식의 핵연료를 설계하고 있다.

  • PDF

A Study on Aseismatic Performance of Base Isolation Systems Using Resilient Friction Pot Bearing (탄성마찰포트받침을 적용한 교량의 내진성능에 관한연구)

  • Oh, Ju;Hyeon, Gi Hwan;Park, Yeon Su;Park, Seong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.127-134
    • /
    • 2008
  • For more districted seismic design and attemped multi-bridge continuity, the existing seismic design is difficulted to treat seismic activity. So, many company applied multi-fixed point and damper or isolator, which is effective for decreasing seismic energy, on period shift, decentralization and damping. But, there is hard to design special bridge with adjusted seismic system because of absence seismic device and insufficient design experience. Therefore, the study on behavior characteristics of designed bridge with various seismic device is performed to utilize the result of this for selection of adequate seismic device.

핵연료 봉의 Fretting Wear어 대한 열수력학적 원인 분석

  • 김상녕;정성엽
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.496-501
    • /
    • 1998
  • 최근 국내의 PWR 발전소에서는 유체유발진동에 의한 핵연료의 Fretting Wear가 많이 발생하였다. 이는 Baffle Jetting이나 그 밖의 요인도 있을 수 있으나 핵연료의 장주기화, 높은 열적여유도등의 설계요건을 만족하기 위한 노심 내의 유동조건 변화에 기인한다. 특히 고리 2호기에서 발생한 핵연료 손상 중 15%정도가 유체유발진동으로 추정되고 있다. 따라서 본 연구는 손상 핵연료의 노심내 위치, 부위, 유동조건 등으로 부터 유체유발진동의 주요 손상 원인을 규명하는데 있다. 이를 위해 핵연료 집합체에서 발생할 수 있는 유체유발진동 메카니즘의 특징과 유동조건, 손상 핵연료의 노심내 위치, 파손 부위, 집합체와 지지격자의 기하학적 형태를 고려한 유동 방향 등을 연관 분석 결과 파손을 일으키는 주요원인을 단일 집합체 내에서 발생되는 Vortex Shedding과 인접한 집합체 사이에서 발생되는 Fluidelastic Instability의 중복효과로 규명하였다 또한 최근 핵연료 설계에 도입된 Mixing Vane의 효과가 과도하여 핵연료 손상을 일으키는 가설을 정립하였다.

  • PDF

Determination of Structural Performance Point Utilizing The Seismic Isolation Rubber Bearing Design Method (면진격리 고무베어링 설계법을 이용한 구조물의 성능점 예측)

  • 김창훈;좌동훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • The seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for determination of the performance point of structures in a simpler way, such an adaptation may be possible for the fact that a structural system under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The superiority of the proposed method to the state-of-the-practice approach is that the reasonably accurate performance point can be obtained without constructing the so-called acceleration displacement response spectrum required in application of capacity spectrum method. The validity of the proposed approach was verified by comparing the predicted values to the exact ones presented in the literature.

Damping Performance Evaluation of Hysteretic Strip Damper with Curvature (곡률이 있는 이력형 스트립 댐퍼의 감쇠 성능 평가)

  • Jae Won Lee;Dong Baek Kim;Yong Gon Kim;Jeong Ho Choi;Jong Hoon Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.572-581
    • /
    • 2023
  • Purpose: The purpose of this study is to improve the irregularity of the stress-strain curve and to ensure accuracy when calculating the damping effect by preventing members from moving in the off-plane direction due to eccentricity when loads are applied. Method: The specifications of the steel strips used in this study are the same, but the curvature of the strips to constitute each damper is different. Each steel strip with different curvature was arranged in an triangle, three dampers with different curvature were made, and repeated load tests were conducted, and the amount of energy dissipation was calculated to measure the performance of the damper. Result: The amount of energy dissipation significantly decreases compared to the case where there is no initial curvature, and the change in the test energy dissipation amount according to the size of the curvature is not large, and the presence or absence of the hyperbolic rate is considered an important variable. Conclusion: The period is about 78.7% longer from T=0.3 to T=0.536sec, and the response spectrum acceleration is reduced from Sa=0.54g to Sa=0.229g, so the damping effect of the damper is sufficient.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.