• Title/Summary/Keyword: 장시간 시효처리

Search Result 6, Processing Time 0.019 seconds

The Effect of Long Term Thermal Aging on High Temperature Mechanical Properties in STS316 (장시간 시효처리가 316 스트인리스 강의 고온 기계적 성질에 미치는 영향)

  • 임지우;정찬서;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2002
  • At elevated temperature, very complex precipitations occur in STS316. To investigate the effect of the precipitation on mechanical properties in SIS316, tensile tests and fatigue crack growth tests were carried out at $650^{\circ}C$ using artificially degraded materials. The material degradation was simulated by aging for up to 20000 hrs. at $750^{\circ}C$, which is equal to 179000hrs (about 20yrs) of service life at $650^{\circ}C$, after conducting solution treatment for 20 min. at $11300^{\circ}C$. The result of the hardness test and the tensile test showed that both properties are closely related to the mean free distance of carbides. Also, from the results of fracture tests at $650^{\circ}C$, ${\triangle}K_{th}$, after values were found to decrease as aging time and microstructure, as the volume fraction of $\sigma$ phase increased.

Behavior of Reverted Austenite in Fe-Ni-Mn-(Ti) Maraging Steels (Fe-Ni-Mn-(Ti)계 마르에이징강에서 역변태 오스테나이트의 거동)

  • Kim, Sung-Joon
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.141-147
    • /
    • 1993
  • The behavior of reverted austenite in Fe-Ni-Mn(Ti) maraging steels has been investigated in the temperature range from $400^{\circ}C$ to $550^{\circ}C$ using TEM equipped with EDX. Four kinds of reverted austenite appeared depending on the aging temperatures and time : Widmanstatten, granular, lath-like and recrystallized austenite. The reverted austenites are enriched in Ni and Mn due to the dissolution of precipitates and redistribution of alloying elements. Widmanstatten austenite appears unformly in the lath martensite having the K-S orientation relationship with the martensite lath, while lath-like martensites showed K-S and N relations depending on the chemistry and heat treating condition. The recrystallized austenite forms at $550^{\circ}C$ after long aging times : some becomes unstable and transforms to lath martensite on cooling.

  • PDF

Tensile Properties of Powder Metallurgy Processed PM Cu-7.5Ni-5Sn Alloy with Different Heat Treatment Conditions (분말야금법으로 제조된 Cu-7.5Ni-5Sn 합금의 열처리 조건에 따른 기계적 특성의 변화)

  • Ryu, Jae-Cheol;Kim, Sang-Sik;Han, Seung-Jeon;Kim, Chang-Ju
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.905-912
    • /
    • 1999
  • Tensile properties of powder metallurgy (PM) processed Cu-7.5Ni-5Sn alloys, either as-received or additionally solution heat treated, were examined as a function of aging time. It was found that the as-received Cu-7.5Ni-5Sn alloys showed an abrupt increase in tensile strength after aging at $350^{\circ}C$ for 20 minutes, due to the metastable ${\gamma}$\\` precipitation and a marginal Spinodal decomposition. The resolutionized PM Cu-7.5Ni-5Sn alloys, on the other hand, showed a gradual increase in tensile strength from the very early stage of aging. The overall tensile strength of resolutionized PM Cu-7.5Ni-5Sn alloys, however, was lower than that of the as-received and aged counterparts, due to the grain growth during resolutionization. Afterprolonged aging for the as-received PM Cu-7.5Ni-5Sn alloys, a considerable amount of discontinuous precipitates formed along the grain boundaries. The formation and growth kinetics of such discontinuous precipitates appeared to be dependent on the heat treatment conditions, and affect the mechanical properties greatly.

  • PDF

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

FE-Simulation and Measurement of the Residual Stress in Al6061 During T6 Heat Treatment (Al6061-T6 열처리 잔류응력의 유한요소해석 및 측정)

  • Ko, Dae-Hoon;Kim, Tae-Jung;Lim, Hak-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The purpose of this study is to predict the residual stress in Al6061 during T6 heat treatment. In this study, the variable residual stress in case of the solid solution($530^{\circ}C$, 2h) and artificial ageing($175^{\circ}C$, 9h) of Al6061 subjected to T6 heat treatment is determined at different ageing times. A heat treatment experiment is conducted to determine the heat transfer coefficient, on the basis of which the residual stress during the T6 heat treatment is predicted. In order to take into account the relaxation of residual stress during artificial ageing, a Zener-Wert-Avrami function is used and elasto-plastic nonlinear analysis is conducted through FE-simulation. Further, the residual stress is measured by using the X-ray diffraction(XRD) method, and the result is compared with the result from the FE-simulation. It is found that the residual stress predicted form the FE-simulation is in good agreement with the residual stress measured by using the XRD method.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF