• Title/Summary/Keyword: 장단기 메모리

Search Result 52, Processing Time 0.022 seconds

A Study on Stock Trading Method based on Volatility Breakout Strategy using a Deep Neural Network (심층 신경망을 이용한 변동성 돌파 전략 기반 주식 매매 방법에 관한 연구)

  • Yi, Eunu;Lee, Won-Boo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.81-93
    • /
    • 2022
  • The stock investing is one of the most popular investment techniques. However, since it is not easy to obtain a return through actual investment, various strategies have been devised and tried in the past to obtain an effective and stable return. Among them, the volatility breakout strategy identifies a strong uptrend that exceeds a certain level on a daily basis as a breakout signal, follows the uptrend, and quickly earns daily returns. It is one of the popular investment strategies that are widely used to realize profits. However, it is difficult to predict stock prices by understanding the price trend pattern of stocks. In this paper, we propose a method of buying and selling stocks by predicting the return in trading based on the volatility breakout strategy using a bi-directional long short-term memory deep neural network that can realize a return in a short period of time. As a result of the experiment assuming actual trading on the test data with the learned model, it can be seen that the results outperform both the return and stability compared to the existing closing price prediction model using the long-short-term memory deep neural network model.

Improved SOH Prediction Model for Lithium-ion Battery Using Charging Characteristics and Attention-Based LSTM (충전 특성과 어텐션 기반 LSTM을 활용한 개선된 리튬이온 배터리 SOH 예측 모델)

  • Hanil Ryoo;Sang Hun Lee;Deok Jai Choi;Hyuk Ro Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.103-112
    • /
    • 2023
  • Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.

A Survey on Neural Networks Using Memory Component (메모리 요소를 활용한 신경망 연구 동향)

  • Lee, Jihwan;Park, Jinuk;Kim, Jaehyung;Kim, Jaein;Roh, Hongchan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.307-324
    • /
    • 2018
  • Recently, recurrent neural networks have been attracting attention in solving prediction problem of sequential data through structure considering time dependency. However, as the time step of sequential data increases, the problem of the gradient vanishing is occurred. Long short-term memory models have been proposed to solve this problem, but there is a limit to storing a lot of data and preserving it for a long time. Therefore, research on memory-augmented neural network (MANN), which is a learning model using recurrent neural networks and memory elements, has been actively conducted. In this paper, we describe the structure and characteristics of MANN models that emerged as a hot topic in deep learning field and present the latest techniques and future research that utilize MANN.

Dynamic Voltage and Frequency Scaling based on Buffer Memory Access Information (버퍼 메모리 접근 정보를 활용한 동적 전압 주파수 변환 기법)

  • Kwak, Jong-Wook;Kim, Ju-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As processor platforms are continuously moving toward wireless mobile systems, embedded mobile processors are expected to perform more and more powerful, and therefore the development of an efficient power management algorithm for these battery-operated mobile and handheld systems has become a critical challenge. It is well known that a memory system is a main performance limiter in the processor point of view. Although many DVFS studies have been considered for the efficient utilization of limited battery resources, recent works do not explicitly show the interaction between the processor and the memory. In this research, to properly reflect short/long-term memory access patterns of the embedded workloads in wireless mobile processors, we propose a memory buffer utilization as a new index of DVFS level prediction. The simulation results show that our solution provides 5.86% energy saving compared to the existing DVFS policy in case of memory intensive applications, and it provides 3.60% energy saving on average.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm (고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구)

  • Lee, Seungro;Lee, Seungcheol;Han, Dosuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.521-527
    • /
    • 2021
  • This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.

Fake News Detection based on Convolutional Neural Network and Sentiment Analysis (합성곱신경망과 감성분석 기반의 가짜뉴스 탐지)

  • Lee, Tae Won;Yang, Yeongwook;Park, Ji Su;Shon, Jin Gon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.64-67
    • /
    • 2021
  • 가짜뉴스는 뉴스 기사 형식을 갖는 날조된 정보를 의미하며, 최근 모바일 인터넷 장치의 보급과 소셜 네트워크 서비스의 대중화로 온라인 확산이 가속화되고 있다. 기존 연구는 가짜뉴스의 탐지를 위해 뉴스의 주제목, 부제목, 리드, 본문 등 뉴스 기사를 이루는 구성요소를 비롯하여 언론사, 기자, 날짜, 확산 경로 등의 메타 데이터를 대상으로 분석하였다. 그러나 뉴스의 제목과 본문 및 메타 데이터 등은 내용 수정이 쉬워, 다량의 데이터를 학습한 모델이라 하더라도 높은 정확도를 장기간 유지하기 어려울 수 있다. 이러한 문제점을 해결하기 위하여 본 논문은 합성곱 신경망을 이용해 문맥 정보를 분석하고 장단기 메모리 기반의 감성분석을 추가로 수행한다. 문맥 정보와 가짜뉴스 유포자가 쉽게 수정할 수 없는 감성 변화 패턴을 활용하여 성능이 개선된 가짜뉴스 탐지 모델을 제안한다.

Fall detection based on GAN and LSTM (적대적 생성 신경망과 장단기 메모리셀을 이용한 낙상 검출)

  • Hyojin Shin;Jiyoung Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.21-22
    • /
    • 2023
  • 본 논문에서는 낙상과 비낙상 구별을 위한 분류 모델을 제안한다. 일상생활과 낙상을 구분해 내는 것은 낙상이 발생하기 이전에 감지하고 사고를 예방할 수 있다. 낙상은 일상생활 중 일어나기 쉬우며, 노인들에게는 골절 및 기관 파열 등과 같은 심각한 부상을 초래할 수 있기 때문에 낙상 방지를 위한 낙상과 비낙상 행동의 구분은 중요한 문제이다. 따라서 실시간으로 수집되는 다양한 활동에서의 센서 데이터를 활용하여 낙상과 비낙상의 행동을 구분하였다.

  • PDF

Flight State Prediction Techniques Using a Hybrid CNN-LSTM Model (CNN-LSTM 혼합모델을 이용한 비행상태 예측 기법)

  • Park, Jinsang;Song, Min jae;Choi, Eun ju;Kim, Byoung soo;Moon, Young ho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • In the field of UAM, which is attracting attention as a next-generation transportation system, technology developments for using UAVs have been actively conducted in recent years. Since UAVs adopted with these technologies are mainly operated in urban areas, it is imperative that accidents are prevented. However, it is not easy to predict the abnormal flight state of an UAV causing a crash, because of its strong non-linearity. In this paper, we propose a method for predicting a flight state of an UAV, based on a CNN-LSTM hybrid model. To predict flight state variables at a specific point in the future, the proposed model combines the CNN model extracting temporal and spatial features between flight data, with the LSTM model extracting a short and long-term temporal dependence of the extracted features. Simulation results show that the proposed method has better performance than the prediction methods, which are based on the existing artificial neural network model.

A Study on Deep Learning Model for Discrimination of Illegal Financial Advertisements on the Internet

  • Kil-Sang Yoo; Jin-Hee Jang;Seong-Ju Kim;Kwang-Yong Gim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.21-30
    • /
    • 2023
  • The study proposes a model that utilizes Python-based deep learning text classification techniques to detect the legality of illegal financial advertising posts on the internet. These posts aim to promote unlawful financial activities, including the trading of bank accounts, credit card fraud, cashing out through mobile payments, and the sale of personal credit information. Despite the efforts of financial regulatory authorities, the prevalence of illegal financial activities persists. By applying this proposed model, the intention is to aid in identifying and detecting illicit content in internet-based illegal financial advertisining, thus contributing to the ongoing efforts to combat such activities. The study utilizes convolutional neural networks(CNN) and recurrent neural networks(RNN, LSTM, GRU), which are commonly used text classification techniques. The raw data for the model is based on manually confirmed regulatory judgments. By adjusting the hyperparameters of the Korean natural language processing and deep learning models, the study has achieved an optimized model with the best performance. This research holds significant meaning as it presents a deep learning model for discerning internet illegal financial advertising, which has not been previously explored. Additionally, with an accuracy range of 91.3% to 93.4% in a deep learning model, there is a hopeful anticipation for the practical application of this model in the task of detecting illicit financial advertisements, ultimately contributing to the eradication of such unlawful financial advertisements.