• Title/Summary/Keyword: 장기 체공

Search Result 70, Processing Time 0.018 seconds

A Research for Energy Harvest/Distribution/Control of HALE UAV based on the Solar Energy (태양 일조량 변화에 따른 HALE UAV의 동력 수집/분배/제어 특성 연구)

  • Nam, Yoonkwang;Park, To Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2015
  • Recently, as the needs for eco-friendly aero propulsion system increase gradually, many study works have been conducted to develop the hybrid propulsion system for High Altitude Long Endurance(HALE) UAV. In this study, we analyzed both suitable energy distribution and management methodology among the total energy collected from solar cell and the total required energy of aerial vehicle and required energy of the regenerative fuel cell(RFC) for driving in the night time and optimized the energy balance mechanism based on the ascribed mission profile.

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF

Structural Analysis and Integrity Verification of Main Wing of HALE UAV (성층권 장기체공 무인기 주익 구조 해석 및 건전성 평가)

  • Park, Sang Wook;Kim, Sung Joon;Shin, Jeong Woo;Lee, Seunggyu;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, development of long endurance electric powered airplane has been conducted worldwidely. Light structural weight of a main wing with sufficient structural integrity is essential for long endurance flight. Since a main wing with a slender spar can occur catastrophic fracture under the flight, it is important to establish a design and verification method for both the weight reduction and structural integrity. In this paper, structural design and analysis of the main wing of HALE UAV with tubular spar reinforced with a bulkhead were introduced. The static strength test of the main wing was performed to verify structural integrity under the static load. Then, the experimental result was compared with an analytical result from a finite element analysis. It was concluded that the developed light weight main wing would have sufficient structural integrity under the flight operation.

A Sizing Method for Solar Power Long Endurance UAVs (태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론)

  • Lee, Ju-Ho;Lee, Chang-Gwan;Lim, Se-Sil;Kim, Keum-Seong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.758-766
    • /
    • 2010
  • The design procedure of Solar Power UAVs is complicated because the configuration and required power for flight must be considered simultaneously as the supplied power is influenced by the wing area. In order to minimize trial and error for the Solar Power UAVs design, a systematic sizing method is proposed which can be used to determine whether a Solar Power UAV is feasible for a given mission, and to derive preliminary dimensional specification of it. The sizing procedure begins with initially assumed wing area because the power, lift, and drag of the wing are directly proportional to it. The assumed wing area and mission requirements are then used to determine step by step the airfoil specifications including lift coefficient and drag coefficient, weight, required power, and wing area. This procedure is iterated for each newly assumed wing area until the error between the assumed wing area and calculated wing area becomes significantly small enough. This sizing methodology was applied to previously developed Solar Power UAVs for validation purposes, resulting in good agreement. The methodology was also applied to determine the dimensions and specifications of the Solar Power High-Altitude Long-Endurance UAV.

A Study on 3.0m Low-Altitude Long-Endurance Solar Powered UAV System (3.0m급 저고도 장기체공 태양광 무인기 시스템 연구)

  • Jaebaek Jeong;Taerim Kim;Doyoung Kim;Seokmin Moon;Jae-Sung Bae;Sanghyuk Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.10-17
    • /
    • 2023
  • This paper describes the research and development of a 3.0 m Solar-Powered UAV system for mission flight that is based on the 4.2 m Solar-powered UAV. Both the Solar-Powered UAVs were lightened in weight by applying a composite fuselage and solar charging system. Also, a deep stall landing application and airbag module were installed for usability in mission performance. The flight performance of the Solar-Powered UAV system was verified through flight test. In particular, the 3.0 m Solar-Powered UAV performed continuous flight along the coastline of Jeju Island for 147 km in 3 hours and 50 minutes, and its performance as a mission flight was also confirmed.

Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis (시험과 전산해석을 이용한 고고도용 프로펠러 성능 분석)

  • Park, Donghun;Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1035-1047
    • /
    • 2015
  • Wind tunnel experiment and computational analysis have been carried out to evaluate the performance of propeller for scale electric-powered HALE UAV, named EAV-2H+. Performance curves are measured for three propellers and their adequacy for EAV-2H+ installation is examined through consideration of operating conditions. Decline in performance coefficients is observed in low rpm region. Also, the effect of transition tape on propeller performance is measured and analyzed. The computational performance analyses are carried out by using commercial CFD program. The thrust and power coefficient from computations show good agreement with experimental results. Performance coefficients are compared and the influence of measurement device which contributes to discrepancy of the results is examined. Transition SST model is confirmed to yield the tendency of performance decline in low rpm range, similar to experimental observation. The decrease in aerodynamic performance of blade element due to low Reynolds number is identified to cause the decline in propeller performance. Analyses for high altitude conditions confirms degradation in propeller performance.

Vertical Analysis of Wind Speed over South Korea for the Flight Safety of HALE UAV (장기체공무인기의 운항안전을 위한 남한지역 고도별 풍속 분석)

  • Cho, Young-Jun;Ha, Jong-Chul;Choi, Reno K.Y.;Kim, Ki-Hoon;Lim, Eunha;Kim, Su-Bok;Yun, Jong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.551-558
    • /
    • 2016
  • We analyzed wind speed over South Korea for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) flight safety. Annual variation of wind speed at 200 hPa showed that winter season was stronger than summer. According to latitude, wind speeds in January and August were found to be $52{\sim}74m\;s^{-1}$ and $15{\sim}26m\;s^{-1}$, respectively. Wind speed was stronger(weaker) at lower latitudes than higher latitudes in winter(summer). Frequency(%) of wind speed less than threshold value($18m\;s^{-1}$) for the operation date was investigated. The days showing the frequency greater than 60 % in all altitudes of surface ~ 50 hPa showed the range of 1 ~ 33 days at 7 stations. Operation date was the longest period at Gosan. The appropriate date of HALE UAV operation at Gosan and Osan is considered as the middle of July ~ middle of August and end of July ~ early August, respectively. These results can be used to determine the operation date of HALE UAV.

Configuration and Ground Tests of Solar Cell and Fuel Cell Powered System for Long Endurance UAV (장기체공 무인기용 태양전지-연료전지를 활용한 동력원 구성 및 지상시험)

  • Park, Byeongseob;Kim, Hyuntak;Baek, Seungkwan;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.94-101
    • /
    • 2015
  • Each of power systems of solar cell and fuel cell were configured and validated for long endurance UAV, as the preliminary research for the integration of power systems. Solar power system consisted of solar modules fabricated by solar cells of Sunpower's C60, commercial solar MPPT controller and Li-po battery, and then was validated. The re-start characteristics of hydrogen production from $NaBH_4$ hydrolysis was validated for operating the commercial fuel cell. The average voltage drop of Li-po battery in solar power system was -2.9 V/hour. The performance of re-start characteristics of $NaBH_4$ hydrolysis was stable in sequence mode of mission profile. Each of single systems were satisfied for the proposed mission profile.

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.