• 제목/요약/키워드: 장기간 의존 시계열

검색결과 2건 처리시간 0.014초

장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산 추정 (Bootstrap estimation of long-run variance under strong dependence)

  • 백창룡;권용
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.449-462
    • /
    • 2016
  • 본 논문은 시계열 분석의 추론에서 매우 중요한 역할을 하는 장기적 분산에 대해서 붓스트랩을 이용한 추정을 다룬다. 본 논문은 기존의 방법을 두가지 측면에서 확장한다. 첫째, 단기억 시계열에서의 장기적 분산 추정을 확장하여 자료의 의존성이 매우 강한 장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산의 추정에 대해서 논의한다. 또한 장기간 의존 시계열이 평균변화모형과 매우 쉽게 잘 혼동됨이 잘 알려져 있기에 이를 해결하기 위해서 쌍봉형 커널을 이용한 추세 추정 및 붓스트랩의 블럭을 결정하는 방법을 제안한다. 모의 실험결과 제안한 방법이 매우 유의하였으며 북반구 평균 온도 변화 자료 분석으로 실증 자료 예제도 아울러 제시하였다.

희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석 (The sparse vector autoregressive model for PM10 in Korea)

  • 이원석;백창룡
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.807-817
    • /
    • 2014
  • 본 논문은 최근 많은 관심을 받는 미세먼지 (PM10)의 일별 평균농도에 대해서 전국 16개 시도에서 2008년부터 2011년까지 관측한 다변량 시계열 자료에 대한 연구이다. 다변량 시계열 모형을 이용해서 시간 및 공간에 대한 상관관계를 동시에 고려, 일변량 혹은 특정 지역에 국한해서 분석한 기존의 연구와 차별성을 두었다. 또한 Davis 등 (2013)이 제안한 부분 스펙트럼 일관성 (partial spectral coherence)을 통해 다른 지역간의 상호 의존성을 파악하고 이를 토대로 변수 선택을 통해 희박벡터자기회귀모형 (sVAR; sparse vector autoregressive model)을 적합하는 방법론을 적용하여 고차원 자료 분석의 단점 및 한계를 보완하였으며 예측력 비교를 통해서 sVAR 모형 적합의 타당성을 검증하였다.