• Title/Summary/Keyword: 장기가뭄

Search Result 234, Processing Time 0.226 seconds

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Analysis on Statistical Characteristics of Household Water End-uses (가정용수 용도별 사용량의 통계적 특성 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Park, No Suk;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.603-614
    • /
    • 2008
  • End-uses of household water have been changed by a life style, housing type, weather, water rate and water supply facilities etc. and those variables can be considered as an internal and exogenous factors to estimate long-term demand forecasts. Analysis of influential factors on water consumption in households would give an explanation to cause on the change of trend and would help predicting the water demand of end-use in household. The purpose of this study is to analyze the demand trends and patterns of household water uses by metering and questionnaire such as occupation, revenue, numbers of family member, housing types, age, floor area and installation of water saving device, etc. The peak water uses were shown at Saturday among weekdays and July in a year based on the analysis results of water use pattern. A steep increase of total water volume can be found in the analysis of water demand trend according to temperature from $-14^{\circ}C$ to $0^{\circ}C$, while there are no significant variations in the phase of more than $0^{\circ}C$, with an almost stable demand. Washbowl water shows the highest and toilet water shows the lowest relation with temperature in correlation analysis results. In the results of ANOVA to find the significant difference in each unit water use by exogenous factors such as housing type, occupation, number of generation, residential area and income et al., difference was shown in bathtub water by housing type and shown in kitchen, toilet and miscellaneous water by numbers of resident. Especially, definite differences in components except washbowl and bathtub water, could be found by numbers of resident. Based on the result, average residents in a house should be carefully considered and the results can be applied as reference information, in decision making process for predicting water demand and establishing water conservation policy. It is expected that these can be used as design factors in planning stage for water and wastewater facilities.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.