• Title/Summary/Keyword: 장거리

Search Result 966, Processing Time 0.029 seconds

A Study on Restrictions on Entry of Drones into No-Flight Zones using Self-Drop (Self-Drop을 이용한 드론의 비행 금지구역 진입 제한에 관한 연구)

  • Jang-Won, Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.457-462
    • /
    • 2022
  • Recently, a variety of cultural life using drones as an entertainment tool has been created, and in order to realize this, more and more users are using drones with good performance enough to invade the no-flight zone. Drones for satisfying entertainment activities must have long flight times and be able to fly long distances, which can often cause great damage by invading no-flight zones or causing unwanted flight crashes. In this study, in order to solve this problem, a no-flight zone is set with GCS(Ground Control System), and when flying at a critical speed of 10km/h or less, the drone is safely operated by not entering the critical distance 10m away from the no-flight zone, and the critical speed A method was proposed to prevent the drone from entering the no-flight zone by allowing the drone to self-drop by GCS control when it flies beyond the threshold and enters the critical distance. As a result of a total of 44 repeated experiments in a specific experimental area with the proposed method, the drone safely self-dropped except for the case where it crossed the restricted area once or twice. It was found to be an appropriate way to prevent this.

A Study on the Method of Constructive Simulation Operation Analysis for Warfighting Experiment Supplied with the Validation Evaluation (타당성 평가가 보완된 모델 운용상의 전투실험 모의분석 절차 연구)

  • Park, Jin-Woo;Kim, Nung-Jin;Kang, Sung-Jin;Soo, Hyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.77-87
    • /
    • 2010
  • Currently, our society has been changed from the industrial society to the information society. As the war progresses to Information Warfare, Network-Centric Warfare, Long-Range Precision Engagement and Robot Warfare, the military should advance to High-tech Scientific force. For this creation of the war potential, it is regarded as the warfighting experiment is a critical method. Surely it is rational that LVC(Live Virtual Constructive simulation) is desirable to make the warfighting experiment. But because it is limited by the cost, the time, the place and the resource, the constructive simulation(M&S : Modeling&Simulation) is a good tool to solve those problems. There are some studies about the evaluation process for developing the model, but it is unsatisfying in the process of the constructive simulations' operation. This study focuses on the way of constructive simulation operation, which is supplied with the evaluation process(VV&A : Verification Validation & Accreditation). We introduce the example of the rear area operation simulation for "appropriateness evaluation to the organization of logistic corps" by the AWAM(Army Weapon Analysis Model). This study presents the effective methods of the constructive simulations, which is based on the reliable evaluation process, so it will contribute to the warfighting experiments.

Availability of the metapopulation theory in research of biological invasion: Focusing on the invasion success (침입생물 연구에 대한 메타개체군 이론의 활용 가능성: 침입 성공을 중심으로)

  • Jaejun Song;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.525-549
    • /
    • 2022
  • The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.

Leading, Coincident, Lagging INdicators to Analyze the Predictability of the Composite Regional Index Based on TCS Data (지역 경기종합지수 예측 가능성 검토를 위한 TCS 데이터 선행·동행·후행성 분석 연구)

  • Kang, Youjeong;Hong, Jungyeol;Na, Jieun;Kim, Dongho;Cheon, Seunghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.209-220
    • /
    • 2022
  • With the worldwide spread of African swine fever, interest in livestock epidemics has increased. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but there are no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted the trajectory of livestock-related vehicles using the facility-visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority. The results are presented as exposure indices aggregating the link-time occupancy of each vehicle. As a result, 274,519 livestock-related vehicle trajectories were extracted, and the exposure values by link and zone were derived quantitatively. This study highlights the need for prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies.

Investigation of Optimal Temperature and Salinity for Long Distance Transport of the pacific abalone (Haliotis discus hannai) (참전복(Haliotis discus hannai)의 장거리 수송을 위한 적정 수온 및 염분 조건 탐색)

  • Yang, Sung Jin;Min, Byung Hwa;Lee, Jeong Young;Jun, Je-Cheon;Myeong, Jeong-In
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • This study was carried out to investigate the stress response of pacific abalone exposed to various water temperatures (4, 6, 8, and 10℃) and salinities (26, 30, and 34 psu) for 7 days, with the aim of finding optimum conditions for long-distance ocean transport of pacific abalone. At the end of the experiments, the survival rate was ranged from 98.7~100% at 8 and 10℃ but dropped to 25~55% at 4℃ in all salinity levels. The levels of SOD and glutathione in hemolymph were significantly higher at 4 and 6℃ than the control in all salinity groups, indicating that these temperatures induce severe stress in pacific abalone. It was found that THC was lowest at 6℃ in the 26 psu groups. The study showed that the hemocyte of pacific abalone populations mostly consisted of blast-like cells and hyalinocytes with the ratio of hyalinocytes being significantly lower at 4 and 6℃ than the other temperatures in the 26 psu groups. Percentages of apoptotic cells and necrotic cells were higher in the 26 psu group and 4 and 6℃ temperature groups. These results explicit that pacific abalone was exposed to greater stress at 26 psu and at 4 and 6℃ but experienced no significant higher stress at 30 and 34 psu and 8 and 10℃. It was therefore concluded that the optimum temperature and salinity for the long distance transport of pacific abalone range from 8~10℃ and 30~34 psu, respectively.

Improvement of Optimal Bus Headway for Intermodal Transfer Station (교통수단간 연계를 위한 최적 버스 배차간격 조정 알고리즘 개발)

  • Ryu, Byoungyong;Yang, Seungtae;Bae, Sanghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.17-23
    • /
    • 2009
  • Due to the rapid increase of vehicles on the street, Korean society is facing worsening traffic congestions and air pollutions. Also, the oil price pickup has led to increasing need for the use of public transportation. In particular, transfering among public transportation may be a main factor for riders who are commuting for a long distance journey. In order to ensure such connectivity, transfer stations have been actively built in Korea. However, it would be necessary to shift those vehicles, from cars to public transportations by enhancing the users' satisfaction with public transportation through strategies for minimizing the users' waiting cost by building an efficient connective system between transportation modes as well as the preparation of aforementioned transfer stations. Therefore, this study aimed to develop an algorithm for minimizing transferring passengers' waiting costs based on service intervals of linked buses within the transfer facilities. In order to adjust the service interval, we calculated the total costs, involving the wait cost of transfer passengers and bus operation costs, and produced an allocation interval, that would minimize the costs. We selected a KTX departing from Seoul station, and a No. 6014 bus route in Gwangmyeong city where it starts from the Gwangmyeong station in order to for verifying the model. Then, the transfer passengers' total waitting cost was reduced equivalent to the maximum of 212 minutes, and it revealed that the model performed very effectively.

Compositions and pollution characteristics of total suspended particles (TSP) at 1100 Site of Mt. Halla (한라산 1100 고지 총부유분진(TSP)의 조성 및 오염 특성)

  • Kim, Won-Hyung;Kang, Chang-Hee;Jung, Duk-Sang;Go, Hui-Jeong;Lee, Won
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.304-315
    • /
    • 2008
  • The total suspended particles (TSP) collected at the 1100 site of Mt. Halla have shown higher compositions for the anthropogenic components followed by marine and soil originated ones. The concentrations of the soil originated nss-$Ca^{2+}$, Al, Fe, Ca components have been increased in spring, and the anthropogenic $NH{_4}^+$, $K^+$, nss-$SO{_4}^{2-}$ components showed high concentrations in June. Meanwhile, the concentration of $NO{_3}^-$ as same as nss-$Ca^{2+}$ was higher in spring. It's likely due to the influence of its long-range transport from China. Compared to the non-Asian Dust periods, the concentrations of nss-$Ca^{2+}$, Al, Ca, and Fe have been increased 7.2~9.5 times in Asian Dust storm periods, and those of nss-$SO{_4}^{2-}$ and $NO{_3}^-$ were 1.3 and 3.8 times, respectively. From the factor analysis, the TSP compositions were influenced mainly by anthropogenic emission sources, followed by oceanic and soil sources. The backward trajectory analysis has shown that the concentrations of the anthropogenic and soil components were increased when the air parcels had been moved into Jeju island via China in a northwesterly wind.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Characteristics of source localization with horizontal line array using frequency-difference autoproduct in the East Sea environment (동해 환경에서 차주파수 곱 및 수평선배열을 이용한 음원 위치추정 특성)

  • Joung-Soo Park;Jungyong Park;Su-Uk Son;Ho Seuk Bae;Keun-Wha Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • The Matched Field Processing (MFP) is an estimation method for a source range and depth based on the prediction of sound propagation. However, as the frequency increases, the prediction inaccuracy of sound propagation increases, making it difficult to estimate the source position. Recently proposed, the Frequency-Difference Matched Field Processing (FD-MFP) is known to be robust even if there is a mismatch by applying a frequency-difference autoproduct extracted from the auto-correlation of a high frequency signal. In this paper, in order to evaluate the performance of the FD-MFP using a horizontal line array, simulations were conducted in the environment of the East Sea of Korea. In the area of Bottom Bounce (BB) and Convergence Zone (CZ) where detection of a sound source is possible at a long range, and the results of localization were analyzed. According to the the FD-MFP simulations of horizontal line array, the accuracy of localization is similar or degraded compared to the conventional MFP due to diffracted field and mismatch of sound speed. There was no clear result from the simulations conforming that the FD-MFP was more robust to mismatch than the conventional MFP.

Increased Efficiency of Long-distance Optical Energy Transmission Based on Super-Gaussian (수퍼 가우시안 빔을 이용한 레이저 전력 전송 효율 개선)

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Hyesun Cha;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.150-156
    • /
    • 2024
  • One of the key factors in research regarding long-distance laser beam propagation, as in free-space optical communication or laser power transmission, is the transmission efficiency of the laser beam. As a way to improve efficiency, we perform extensive numerical simulations of the effect of modifying the laser beam's profile, especially replacing the fundamental Gaussian beam with a super-Gaussian beam. Numerical simulations of the transmitted power in the ideal diffraction-limited beam diameter determined by the optical system of the transmitter, after about 1-km propagation, reveal that the second-order super-Gaussian beam can yield superior performance to that of the fundamental Gaussian beam, in both single-channel and coherently combined multi-channel laser transmitters. The improvement of the transmission efficiency for a 1-km propagation distance when using a second-order super-Gaussian beam, in comparison with a fundamental Gaussian beam, is estimated at over 1.2% in the singlechannel laser transmitter, and over 4.2% and over 4.6% in coherently combined 3- and 7-channel laser transmitters, respectively. For a range of the propagation distance varying from 750 to 1,250 m, the improvement in transmission efficiency by use of the second-order super-Gaussian beam is estimated at over 1.2% in the single-channel laser transmitter, and over 4.1% and over 4.0% in the coherently combined 3- and 7-channel laser transmitters, respectively. These simulation results will pave the way for future advances in the generation of higher-order super-Gaussian beams and the development of long-distance optical energy-transfer technology.