• Title/Summary/Keyword: 잡음 패턴

Search Result 348, Processing Time 0.029 seconds

Optimization of Thinned Sensor Arrays Using A Weighted Leastd Square Method (계수 최소 자승 방법을 사용한 희소어레이의 최적화)

  • 장병건;전창대
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.117-120
    • /
    • 1999
  • 본 논문은 희소어레이의 패턴을 원하는 패턴과 실제 희소어레이의 패턴간의 오차의 계수적 자승치를 최소화하여 최적화하는 방법을 제시한다 센서의 간격이 어레이 중심에 관하여 대칭인 경우와 비대칭인 경우에 대하여 성능을 점검하며, 어레이 공간의 주어진 영역의 오차함수에 성능 향상을 위하여 계수를 적용한다. 주빔 부근의 측면롭의 효과적인 제어를 위하여 지수 함수적인 계수를 제안하였으며 그 결과 측면롭의 수준이 전체적으로 균등하게 분포되는 패턴을 얻을 수 있었다. 이 결과는 입력잡음신호가 어레이 공간상에 균등하게 입사될 때 효과적으로 사용될 수 있다.

  • PDF

A Study on Voice Recognition using Noise Cancel DTW for Noise Environment (잡음환경에서의 Noise Cancel DTW를 이용한 음성인식에 관한 연구)

  • Ahn, Jong-Young;Kim, Sung-Su;Kim, Su-Hoon;Koh, Si-Young;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.181-186
    • /
    • 2011
  • In this paper, we propose the Noise Cancel DTW that to use a kind of feature compensation. This method is not to use estimated noise but we use real life environment noise data for Voice Recognition. And we applied this contaminated data for recognition reference model that suitable for noise environment. NCDTW is combined with surround noise when generating reference patten. We improved voice recognition rate at mobile environment to use NCDTW.

A study on the robust speaker recognition algorithm in noise surroundings (주변 잡음 환경에 강한 화자인식 알고리즘 연구)

  • Jung Jong-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.47-54
    • /
    • 2005
  • In the most of speaker recognition system, speaker's characteristics is extracted from acoustic parameter by speech analysis and we make speaker's reference pattern. Parameters used in speaker recognition system are desirable expressing speaker's characteristics fully and being a few difference whenever it is spoken. Therefore we su99est following to solve this problem. This paper is proposed to use strong spectrum characteristic in non-noise circumstance and prosodic information in noise circumstance. In a stage of making code book, we make the number of data we need to combine spectrum characteristic and Prosodic information. We decide acceptance or rejection comparing test pattern and each model distance. As a result, we obtained more improved recognition rate than we use spectrum and prosodic information especially we obtained stational recognition rate in noise circumstance.

  • PDF

A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns (복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망)

  • 우용태;이남일;안광선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.2028-2042
    • /
    • 1994
  • Properly defining signal and noise in a self-organizing system like ART(Adaptive Resonance Theory) neural network model raises a number of subtle issues. Pattern context must enter the definition so that input features, treated as irrelevant noise when they are embedded in a given input pattern, may be treated as informative signals when they are embedded in a different input pattern. The ATR automatically self-scales their computational units to embody context and learning dependent definitions of a signal and noise and there is no problem in categorizing input pattern that have features similar in nature. However, when we have imput patterns that have features that are different in size and nature, the use of only one vigilance parameter is not enough to differentiate a signal from noise for a good categorization. For example, if the value fo vigilance parameter is large, then noise may be processed as an informative signal and unnecessary categories are generated: and if the value of vigilance parameter is small, an informative signal may be ignored and treated as noise. Hence it is no easy to achieve a good pattern categorization. To overcome such problems, a Coupled-ART neural network capable of modularized categorization of patterns is proposed. The Coupled-ART has two layer of tightly coupled modules. the upper and the lower. The lower layer processes the global features of a pattern and the structural features, separately in parallel. The upper layer combines the categorized outputs from the lower layer and categorizes the combined output, Hence, due to the modularized categorization of patterns, the Coupled-ART classifies patterns more efficiently than the ART1 model.

  • PDF

Evaluation of the Speckle Noise in Optical Scanning Holography (광 스캐닝 홀로그래피와 스펙클 잡음에 의한 오염도 평가)

  • Kim, You Seok;Kim, Taegeun
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.142-145
    • /
    • 2014
  • In this paper we record the complex hologram of a real object with optical scanning holography (OSH). We reconstruct the complex hologram using a numerical process, and then we evaluate the degree of contamination by speckle noise between the reconstruction of the complex hologram and the image captured by a CCD camera. We use the contrast of the speckle pattern for quantitative evaluation.

Hansel and English Text Font Recognition Using Geometrical Pattern Vector (기하학적 패턴 벡터를 이용한 한.영 글꼴 문자인식)

  • 석영수;홍창희;조정락;강기섭;민종규;이응주
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.425-428
    • /
    • 2001
  • 본 논문에서는 문서 위의 문자를 Off-Line방식으로 컴퓨터에 저장할 수 있도록 기하학적 패턴 벡터를 이용하여 한·영문자 및 글꼴을 인식하는 알고리즘을 제안하였다. 일반적으로 문서에서는 여러 가지 글꼴에 따라 글자의 형태가 다르므로 대표적인 한·영 세 가지 글꼴을 기하학적 패턴(Geometrical Pattern Vector)을 이용하여 크기와 이동에 인식하도록 하였다. 이진 입력 한영혼용 영상에서 잡음을 제거하고 수평·수직 투영 기법을 이용하여 한 문자를 분할하여 문자의 폭에 따라 기하학적 패턴을 추출한다. 추출한 패턴은 각 합계를 계산하여 기준 패턴 합계와 비교한 후 기준 패턴 문자와 글꼴을 인식하게 된다. 마지막으로 제안한 알고리즘의 성능을 평가하기 위해 크기, 이동 변형이 있는 대표적인 한·영 글꼴(신명조, 궁서, 고딕)체와 영어 Time New Roman체를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 원형 패턴 알고리즘보다 문자인식률과 글꼴 그리고 영어의 대·소문자를 구별하는 우수함을 보였다.

  • PDF

Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination (연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델)

  • 장경익;류정우;박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF

Microarray 자료분석에서 표준화

  • 이성곤;박태성;최호식
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2001.11a
    • /
    • pp.149-153
    • /
    • 2001
  • 본 논문은 microarray를 분석하기위한 표준화에 대한 여러 방법들을 소개하고 비교해보았다. Microarray 연구는 Human Genome Project에서 파생된 여러 생명공학 기술 중 가장 널리 사용되는 기술로 기존에는 하지 못했던 총체적인 유전자의 발현상황을 탐색할 수 있다는 장점을 지니고 있으나, 자료들에 일정한 패턴이 나타나거나 잡음이 첨가되어 정보의 추출이 용의하지 않다는 단점을 지니고 있다. 특히 자료에 일정한 패턴이 있는 경우에 올바르지 못한 결론을 이끌어낼 수도 있기에 이 패턴을 제거하는 표준화작업은 microarray 분석에 있어서 매우 중요한 처리과정이다. 본 논문에서는 표준화방법들을 소개하고 각각 가지고 있는 장단점을 실제 국내에서 얻어진 자료를 통해 비교하였고, 그 결과 LOWESS 적합을 통한 표준화방법이 타 방법에 비해 유용한 점이 많음을 확인할 수 있었다.

  • PDF

An Analysis of Noise Robustness for Multilayer Perceptrons and Its Improvements (다층퍼셉트론의 잡음 강건성 분석 및 향상 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • In this paper, we analyse the noise robustness of MLPs(Multilayer perceptrons) through deriving the probability density function(p.d.f.) of output nodes with additive input noises and the misclassification ratio with the integral form of the p.d.f. functions. Also, we propose linear preprocessing methods to improve the noise robustness. As a preprocessing stage of MLPs, we consider ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise reduction effect using PCA or ICA in the viewpoints of SNR(Singal-to-Noise Ratio), we verify the preprocessing effects through the simulations of handwritten-digit recognition problems.

Noise Reduction in Real-time Context Aware using Wearable Device (웨어러블 기기를 이용한 실시간 상황인식에서의 잡음제거)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1803-1810
    • /
    • 2018
  • Recently, many researches related to IoT (Internet of Things) have been actively conducted. In order to improve the context aware function of smart wearable devices using the IoT, we proposed a noise reduction method for the event data of the sensor part. In thisstudy, the adoption of the low - pass filter induces the attenuation of the abnormally measured value, and the benefit was obtained from the situation recognition using the event data of the sensor. As a result, we have validated attenuation for abnormal or excessive noise using event data detected and reported by 3-axis acceleration sensors on some devices, such as smartphones and smart watches. In addition, various pattern data necessary for real - time context aware were obtained through noise pattern analysis.