• Title/Summary/Keyword: 잡음 패턴

Search Result 348, Processing Time 0.025 seconds

KNN/ANN Hybrid Location Determination Algorithm for Indoor Location Base Service (실내 위치기반서비스를 위한 KNN/ANN Hybrid 측위 결정 알고리즘)

  • Lee, Jang-Jae;Jung, Min-A;Lee, Seong-Ro;Song, Iick-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So artificial neural network(ANN) clustering algorithm is applied to improve KNN, which is the KNN/ANN hybrid algorithm presented in this paper. For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of ANN based on SNR. Then, the k RPs are classified into different clusters through ANN based on SNR. Experimental results indicate that the proposed KNN/ANN hybrid algorithm generally outperforms KNN algorithm when the locations error is less than 2m.

Filter-Based Collision Resolution Mechanism of IEEE 802.11 DCF in Noisy Environments (잡음 환경을 고려한 IEEE 802.11 DCF의 필터기반 Collision Resolution 메카니즘)

  • Yoo, Sang-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.905-915
    • /
    • 2007
  • This paper proposes a filter-based algorithm to adaptively adjust the contention window in IEEE 802.11 DCF. The proposed mechanism is focused on the general and realistic environments that have various conditions regarding to noise, media types and network load. For this flexible adaptation, Filter-based DCF(FDCF) takes a more realistic policy such as median filter concept in the image processing technologies. We can handle these various environments by adjusting the contention window size according to the result of filtering based on history-buffer. We can ignore temporarily and randomly occurred transmission failures due to noise errors and collisions in noisy environments. In addition, by changing the reference number and history-buffer size, FDCF can be extended as a general solution including previous proposed mechanism. We have confirmed that the proposed mechanism can achieve the better performance than those of previous researches in aspects of the throughput and the delay in the realistic environments.

Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate (차량 식별마크와 번호판 인식을 통한 차량인식)

  • Lee Eung-Joo;Kim Sung-Jin;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1449-1461
    • /
    • 2005
  • In this paper, we propose a vehicle recognition system based on the classification of vehicle identification mark and recognition of vehicle license plate. In the proposed algorithm, From the input vehicle image, we first simulate preprocessing procedures such as noise reduction, thinning etc., and detect vehicle identification mark and license plate region using the frequency distribution of intensity variation. And then, we classify extracted vehicle candidate region into identification mark, character and number of vehicle by using structural feature informations of vehicle. Lastly, we recognize vehicle informations with recognition of identification mark, character and number of vehicle using hybrid and vertical/horizontal pattern vector method. In the proposed algorithm, we used three properties of vehicle informations such as Independency property, discriminance property and frequency distribution of intensity variation property. In the vehicle images, identification mark is generally independent of the types of vehicle and vehicle identification mark. And also, the license plate region between character and background as well as horizontal/vertical intensity variations are more noticeable than other regions. To show the efficiency of the propofed algorithm, we tested it on 350 vehicle images and found that the propofed method shows good Performance regardless of irregular environment conditions as well as noise, size, and location of vehicles.

  • PDF

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

PVC Classification based on QRS Pattern using QS Interval and R Wave Amplitude (QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.825-832
    • /
    • 2014
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. Even if some methods have the advantage in low complexity, but they generally suffer form low sensitivity. Also, it is difficult to detect PVC accurately because of the various QRS pattern by person's individual difference. Therefore it is necessary to design an efficient algorithm that classifies PVC based on QRS pattern in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose PVC classification based on QRS pattern using QS interval and R wave amplitude. For this purpose, we detected R wave, RR interval, QRS pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 PVC. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 93.72% in PVC classification.

Arrhythmia Classification Method using QRS Pattern of ECG Signal according to Personalized Type (대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류)

  • Cho, Ik-sung;Jeong, Jong -Hyeog;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1728-1736
    • /
    • 2015
  • Several algorithms have been developed to classify arrhythmia which either rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose arrhythmia classification method using QRS Pattern of ECG signal according to personalized type. For this purpose, we detected R wave through the preprocessing method and define QRS pattern of ECG signal by QRS feature Also, we detect and modify by pattern classification, classified arrhythmia duplicated QRS pattern in realtime. Normal, PVC, PAC, LBBB, RBBB, Paced beat classification is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.98%, 97.22%, 95.14%, 91.47%, 94.85%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

A Fuzzy Min-Max Neural Network(FMMNN) Based Gait Phase Classification Method using Electromyography(EMG) Signal (근전도 신호를 이용한 퍼지 최대-최소 신경망 기반 보행 단계 분류 방법)

  • Yi, Tae-Youb;Lee, Sang-Wan;Jang, Hyo-Young;Kim, Heon-Hui;Jung, Jin-Woo;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.841-847
    • /
    • 2007
  • 최근 삶의 수준의 향상과 의학 기술의 발전으로 노인 인구가 증가하고 있다. 하지만 늘어나는 노인 인구에 비례하여 신체적 노화로 거동이 어려운 노인의 수 또한 증가하는 추세이다. 실제로 많은 노인 인구가 거동이 불편해 정상적인 생활을 하지 못하고 있기 때문에 보행 시 적절한 힘을 보조해 줄 수 있는 보행 보조 장치의 개발이 필요하다. 이 같은 보행 보조 장치를 개발함에 있어 보행자의 보행 패턴이 고려된다면 보행자의 걸음걸이에 맞춰 자연스럽게 힘을 보조해 줄 수 있기 때문에 보행자의 보행 단계 분류에 관한 연구가 선행되어야 한다. 그래서 본 논문에서는 하지 근전도 신호를 이용해 보행 단계를 구분하는 방법을 제안하고자 한다. 근전도 신호는 근육이 움직일 때 발생하는 아주 작은 전기적인 신호이다. 근전도 신호는 작은 잡음에도 민감하며, 전극을 부착하는 근육의 위치에 따라서도 값의 차이가 크기 때문에 근전도 신호의 획득 및 처리 방법이 중요하다. 위를 위해 피실험자 별 근육의 위치와 보행 속도를 달리하여 근전도 신호를 획득하고 획득한 신호로부터 여러 특징 값을 추출한다. 그리고 새로운 데이터에 대해 적응성이 강하고 시간에 따라 변하는 근전도 신호의 특성을 잘 반영할 수 있으며 각 집합(class)의 비선형 분리가 가능한 퍼지 최대-최소 신경망(Fuzzy Min-Max Neural Network: FMMNN)을 이용해 보행 단계를 분류해 본다. 실험 결과를 통해 제안한 방법의 타당성을 검증해 보고 보행자, 보행속도, 근전도 측정을 위한 근육의 위치가 보행 패턴 분류에 미치는 영향을 알아본다.

  • PDF

Fingerprint Matching Algorithm Based on Artificial Immune System (인공 면역계에 기반한 지문 매칭 알고리즘)

  • 정재원;양재원;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.173-176
    • /
    • 2003
  • 지문은 종생불변성, 만인부동성, 그리고 사용상의 편리함 때문에 신원인증을 위한 생체인식에 많이 사용되고 있다. 최근에는 기하학구조에 기반한 특이점 매칭방식이 제안되어 인식성능이 매우 높고 잡음에 강한 특성이 있으나 매칭 회수가 많아 인식속도가 느린 단점이 있다. 따라서 기존의 방식은 소수의 지문에 대한 1:다 매칭이나 1:1매칭에 주로 사용된다. 본 논문에서는 기존의 문제점들을 개선하기 위하여 생체 면역계의 자기-비자기 인식 능력에 주목하였다. 생체 면역계는 자기-비자기의 구별 능력을 바탕으로 바이러스나병원균 등의 낮선 외부침입자로부터 자신을 보호하고 침입자를 식별, 제거하는 시스템이다. 본 논문에서는 생체 면역계를 이루는 면역세포 중의 하나인 세포독성 T세포의 생성과정에서 자기, 비자기를 구별하기 위한 MHC 인식부를 형성하는 과정에 착안한 빠르고 신뢰성 있는 지문 인식 알고리즘을 제안한다. 제안한 방식은 지문에 존재하는 특이점(minutiae)인식을 통해 1단계로 global 패턴을 생성하고 2단계로 기하학적인 구조를 만들며, 인식시 global 패턴을 인식한 MHC 인식부에 대해서만 2차 local 매칭을 수행함으로써 매칭 속도가 매우 빠르며 지문의 비틀림이나 회전 등에 대하여 강인하게 인식된다.

  • PDF

An Improved Hough Transform Using Valid Features (유효 특징점을 이용한 개선된 허프변환)

  • Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2203-2208
    • /
    • 2014
  • The Hough transform (HT), that is a typical algorithm for detecting lines in images, needs considerable computational costs and easily detects pseudo-lines on the real world images, because of the large amount of features generated by their complex background or noise. This paper proposes an improved HT that add a preprocessing to estimate the validity of features to the conventional HT. The feature estimation can remove a lot of inessential features for the line detection using a pattern of $3{\times}3$ block features. Experiments using various images show that the proposed algorithm saves computational costs by removing 14%~58% of features depending on images and besides it is superior to the conventional HT in valid line detection.

Development of Camera Controller with Pointer Tracking Unit (카메라 컨트롤러를 이용한 포인터 추적 장치 개발)

  • Lee, Yong-hwan;Ju, Hyun-woong;Song, Sung-hae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.111-117
    • /
    • 2008
  • Presentation with a projector and a laser pointer is widely used in seminar or conference. The function of a laser pointer in the presentation is just indicating a certain object. In this paper, to give a mouse-like function to a laser pointer, we implement a system that locates the track of a laser pointer. The system contains a FPGA that implements camera interface and noise filter. A software for ARM processor is programmed to analyze the spectrum of the captured image and track the pattern of a laser pointer with previously stored image. As a result, the tracking system could locate the position correctly most of time within 20m with 98% accuracy.

  • PDF