• 제목/요약/키워드: 잡음 추정

Search Result 1,025, Processing Time 0.02 seconds

Blind Frequency Offset Estimation Scheme based on ML Criterion for OFDM-based CR Systems in Non-Gaussian Noise (비정규 잡음 환경에서 OFDM 기반 CR 시스템을 위한 ML 기반 블라인드 주파수 옵셋 추정 기법)

  • Kim, Jun-Hwan;Kang, Seung-Goo;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.391-397
    • /
    • 2011
  • This paper investigates the frequency offset (PO) estimation scheme for the orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. In the CR environments, the conventional FO estimation schemes for the OFDM systems experience significant performance degradation due to the effect of the non-Gaussian noise. In this paper, a novel FO estimation scheme based on the maximum likelihood criterion is proposed for the OFDM-based CR systems in non-Gaussian noise environments. The proposed scheme does not require a specific pilot structure and has a better estimation performance compared with that of the conventional scheme.

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Spatially Adaptive Denoising Using Statistical Activity of Wavelet Coefficients (웨이블릿 계수의 통계적 활동성을 이용한 공간 적응 잡음 제거)

  • 엄일규;김유신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8C
    • /
    • pp.795-802
    • /
    • 2003
  • It is very important to construct statistical model in order to exactly estimate the signal variance from a noisy image. In order to estimate variance, information of neighboring region is used generally. The size of neighbor region is varied according to the regional characteristics of image. More accurate estimation of edge variance is due to smaller region of neighbor, on the other hands, larger region of neighbor is used to estimate the variance of flat region. By using estimated variance of original image, in general, Wiener filter is constructed, and it is applied to the noisy image. In this paper, we propose a new method for determining the range of neighbors to estimate the variance in wavelet domain. Firstly, a significance map is constructed using the parent-child relationship of wavelet domain. Based on the number of the significant wavelet coefficients, the range of neighbors is determined and then the variance of the original signal is estimated using ML(maximum likelihood method. Experimental results show that the proposed method yields better results than conventional methods for image denoising.

Noise reduction by sigma filter applying orientations of feature in image (영상에 포함된 특징의 방향성을 적용한 시그마 필터의 잡음제거)

  • Kim, Yeong-Hwa;Park, Youngho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1127-1139
    • /
    • 2013
  • In the realization of obtained image by various visual equipments, the addition of noise to the original image is a common phenomenon and the occurrence of the noise is practically impossible to prevent completely. Thus, the noise detection and reduction is an important foundational purpose. In this study, we detect the orientation about feature of images and estimate the level of noise variance based on the measurement of the relative proportion of the noise. Also, we apply the estimated level of noise to the sigma filter on noise reduction algorithm. And using the orientation about feature of images by weighted value, we propose the effective algorithm to eliminate noise. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering and regardless of the estimated level of the noise variance.

A New Unified System of Acoustic Echo and Noise Suppression Incorporating a Novel Noise Power Estimation (새로운 잡음전력 추정 기법을 적용한 음향학적 반향 및 배경잡음 제거 통합시스템)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.680-685
    • /
    • 2009
  • In this paper, we propose a efficient noise power estimation technique for an integrated acoustic echo and noise suppression system in a frequency domain. The proposed method uses speech absence probability (SAP) derived from the microphone input signal as the smoothing parameter updating noise power to reduce the noise power estimation error resulted from the distortions in the unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm. Therefore, in the proposed approach, the smoothing parameter based on SAP derived from the input signal instead of echo-suppressed signal should stop updating noise power estimates during the distorted noise spectrum periods. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Denoising the Gaussian Noise by the Bayes Techique (Bayes 기법에 의한 가우시안 잡음제거)

  • Woo, Chang-Yong;Park, Nam-Chun;Kim, Jae-Hwan;Joo, Chang-Bok;Shin, Wee-Jae;Lee, Sang-Hoon;Kim, Sung-Il
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.217-220
    • /
    • 2005
  • 베이시안 기법의 잡음제거는 사진정보를 모형화하여 베이스 정리에 의해 사후정보를 계산하는 방법이다. 웨이블릿 변환 영역에서 각 대역의 원 신호 히스토그램을 일반화된 라플라시안 분포로 모형화하여 사전정보로 사용가능하다. 잡음 신호의 히스토그램에서 모형을 추정하기 위해서는 잡음편차가 필요하다. 이 논문에서는 단조변환을 이용하여 웨이블릿 변환된 잡음신호 각 대역의 편차를 추정한 후 이 편차에 가중치를 적용하여 모수를 추정한 후 베이스 기법으로 잡음을 제거하였다. 그리고 그 결과를 위너필터에 의해 잡음제거 된 결과와 PSNR로 비교하였다.

  • PDF

A Study on Edge Detection Algorithm using Estimated Mask in Impulse Noise Environments (임펄스 잡음 환경에서 추정 마스크를 이용한 에지 검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2259-2264
    • /
    • 2014
  • For edge detection methods, there are Sobel, Prewitt, Roberts and Canny edge detector, and these methods have insufficient detection characteristics in the image corrupted by the impulse noise. Therefore in this paper, in order to improve these disadvantages of the previous methods and to effectively detect the edge in the impulse noise environment, using the $5{\times}5$ mask, the noise factors within the $3{\times}3$ mask based on the central pixel is determined, and depending on its status, for noise-free it is processed as is, and if noise is found, by obtaining the estimated mask using the adjacent pixels of each factor, an algorithm that detects the edge is proposed.

Estimation of the Noise Variance in Image and Noise Reduction (영상에 포함된 잡음의 분산 추정과 잡음제거)

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.905-914
    • /
    • 2011
  • In the field of image processing, the removal noise contamination from the original image is essential. However, due to various reasons, the occurrence of the noise is practically impossible to prevent completely. Thus, the reduction of the noise contained in images remains important. In this study, we estimate the level of noise variance based on the measurement of the relative strength of the noise, and we propose a noise reduction algorithm that uses a sigma filter. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering regardless of the level of the noise variance.

Speech Enhancement Based on Modified IMCRA Using Spectral Minima Tracking with Weighted Subband Selection (서브밴드 가중치를 적용한 스펙트럼 최소값 추적을 이용하는 수정된 IMCRA 기반의 음성 향상 기법)

  • Park, Yun-Sik;Park, Gyu-Seok;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In this paper, we propose a novel approach to noise power estimation for speech enhancement in noisy environments. The method based on IMCRA (improved minima controlled recursive averaging) which is widely used in speech enhancement utilizes a rough VAD (voice activity detection) algorithm which excludes speech components during speech periods in order to improves the performance of the noise power estimation by reducing the speech distortion caused by the conventional algorithm based on the minimum power spectrum derived from the noisy speech. However, since the VAD algorithm is not sufficient to distinguish speech from noise at non-stationary noise and low SNRs (signal-to-noise ratios), the speech distortion resulted from the minimum tracking during speech periods still remained. In the proposed method, minimum power estimate obtained by IMCRA is modified by SMT (spectral minima tracking) to reduce the speech distortion derived from the bias of the estimated minimum power. In addition, in order to effectively estimate minimum power by considering the distribution characteristic of the speech and noise spectrum, the presented method combines the minimum estimates provided by IMCRA and SMT depending on the weighting factor based on the subband. Performance of the proposed algorithm is evaluated by subjective and objective quality tests under various environments and better results compared with the conventional method are obtained.

The Improved BAMS Filter for Image Denoising (영상 잡음제거를 위한 개선된 BAMS 필터)

  • Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • The BAMS filter is a kind of wavelet shrinkage filter based on the Bayes estimators with no simulation, therefore it can be used for a real time filter. The denoising efficiency of BAMS filter is seriously affected by the estimated noise variance in each wavelet band. To remove noise in signals in existing BAMS filter, the noise variance is estimated by using the quartile of the finest level of details in the wavelet decomposition, and with this variance, the noise of the level is removed. In this paper, to remove the image noise includingodified quartile of the level of detail is proposed. And by these techniques, the image noises of mid and high frequency bands are removed, and the results showed that the increased PSNR of ab the midband noise, the noise variance estimation method using the monotonic transform and the mout 2[dB] and the effectiveness in denosing of low noise deviation images.