• Title/Summary/Keyword: 잡음 제거 필터

Search Result 867, Processing Time 0.03 seconds

Alpha-trimmed Mean Filter for Impulse Noise Removal (임펄스 잡음 제거를 위한 알파트림 평균 필터)

  • Kim, Kuk-Seung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.393-396
    • /
    • 2010
  • In this paper the process of transmitting images signal restore to image corrupted by impulse noise proposed alpha-trimmed mean filter. the proposed filter first identifies the noise pixels using the morphological noise detector and then removes the detected impulse noise using the alpha-trimmed mean filter. these proposed filter can realize the accurate noise detection and it can remove impulse noise effectively while preserving edge region in the image very well. Through the simulation, we compared with the existing methods and capabilties.

  • PDF

Noise reduction by sigma filter applying orientations of feature in image (영상에 포함된 특징의 방향성을 적용한 시그마 필터의 잡음제거)

  • Kim, Yeong-Hwa;Park, Youngho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1127-1139
    • /
    • 2013
  • In the realization of obtained image by various visual equipments, the addition of noise to the original image is a common phenomenon and the occurrence of the noise is practically impossible to prevent completely. Thus, the noise detection and reduction is an important foundational purpose. In this study, we detect the orientation about feature of images and estimate the level of noise variance based on the measurement of the relative proportion of the noise. Also, we apply the estimated level of noise to the sigma filter on noise reduction algorithm. And using the orientation about feature of images by weighted value, we propose the effective algorithm to eliminate noise. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering and regardless of the estimated level of the noise variance.

Speech Enhancement using the Neural Network Filter (신경망필터를 이용한 음질향상)

  • 김종우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

A Study on No-line Filter for Image Denoising (영상 잡음제거를 위한 비선형 필터에 관한 연구)

  • Long, Xu;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.411-413
    • /
    • 2013
  • Image signal processing is applied in different areas due to diffusion of smart phone, computer, multimedia etc. However, image most is damaged by impulse noise, and the need of denoising technology for improvement of image quality is coming to the fore. The existing methods for denoising such as mean filter and median filter, but they represent poor denoising. Therefore, the removes impulse noise, this paper proposed the modified mean filter algorithm using standard deviation, and as a simulation result, the proposed method showed excellent denoising capabilities to the existing methods.

  • PDF

A Study on Cascade Filter Algorithm for Random Valued Impulse Noise Elimination (랜덤 임펄스 잡음제거를 위한 캐스케이드 필터 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.598-604
    • /
    • 2012
  • Image signal is corrupted by various noises in image processing, many studies are being accomplished to restore those images. In this paper, we proposed a cascade filter algorithm for removing random valued impulse noise. The algorithm consists two steps that noise detection and noise elimination. Variance of filtering mask and center pixel variance are calculated for noise detection, and the noise pixel is replaced by estimated value which first apply switching self adaptive weighted median filter and finally processed by modified weight filter. Considering the proposed algorithm only remove noise and preserve the uncorrupted information that the algorithm can not only remove noise well but also preserve edge.

A Study on the Modified Mean Filter for Removal of Impulse Noise (임펄스 잡음 제거를 위한 변형된 평균필터에 관한 연구)

  • Long, Xu;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.959-962
    • /
    • 2012
  • In the process of image acquisition, transmission and storage, image degradation occurs due to various reason, the mainly reason is noise. To restore basic methods used images of impulse noise pollution by SM, AF, CWMF. In this paper, using the modified filter to remove impulse noise. The method consists of detection and noise filtering of the noise signal. For a non-noise signal is intact, the noise signal is filtered according to the algorithm. And then through the simulation is compared with known basic methods, with PSNR as judged by reference.

  • PDF

An Improved Weighted Filter for AWGN Removal (AWGN 제거를 위한 개선된 가중치 필터)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1227-1232
    • /
    • 2013
  • Recently, the expectation of quality about images over the increasing demand of digital devices is increasing with the development of the technology of the digital. But the images are degraded by a variety of causes, and the main reason is the noises. Therefore, the necessity of denoising comes to the fore, and the research for denoising is progressing dynamically. The images are mainly degraded by AWGN(additive white Gaussian noise), and the characteristics of denoising of existing methods such as mean filter are insufficient. In this paper, an algorithm combined by the spatial weighted filter and the modified adaptive weighted filter is proposed in order to effectively remove the AWGN. In the simulation result, the proposed algorithm showed excellent denoising capabilities.

The Improved BAMS Filter for Image Denoising (영상 잡음제거를 위한 개선된 BAMS 필터)

  • Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • The BAMS filter is a kind of wavelet shrinkage filter based on the Bayes estimators with no simulation, therefore it can be used for a real time filter. The denoising efficiency of BAMS filter is seriously affected by the estimated noise variance in each wavelet band. To remove noise in signals in existing BAMS filter, the noise variance is estimated by using the quartile of the finest level of details in the wavelet decomposition, and with this variance, the noise of the level is removed. In this paper, to remove the image noise includingodified quartile of the level of detail is proposed. And by these techniques, the image noises of mid and high frequency bands are removed, and the results showed that the increased PSNR of ab the midband noise, the noise variance estimation method using the monotonic transform and the mout 2[dB] and the effectiveness in denosing of low noise deviation images.

Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images (영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거)

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Uk;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.151-165
    • /
    • 2010
  • Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.

Denoising Algorithm using Wavelet and Element Deviation-based Median Filter (웨이브렛과 원소 편차 기반의 중간값 필터를 이용한 잡음제거 알고리즘)

  • Bae, Sang-Bum;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2798-2804
    • /
    • 2010
  • The audio and image signal are corrupted by various noises in signal processing, many studies are being accomplished to restore those signals. In this paper, the algorithm is proposed to remove additive Gaussian noise and impulse noise at one dimension signal like an speech signal. The algorithm is composed to remove Gaussian noise after removing impulse noise. And the method using wavelet coefficient accumulation is used to remove the Gaussian noise, and the median filter based on element deviation is applied to remove the impulse noise. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.