Journal of the Institute of Convergence Signal Processing
/
v.9
no.4
/
pp.253-260
/
2008
Image denoising as one of image enhancement methods has been studied a lot in the spatial and transform domain filtering. Recently wavelet transform which has an excellent energy compaction and a property of multiresolution has widely used for image denoising. But a transform based on human visual system is visually useful if an end user is human beings. Therefore, Gabor cosine and sine transform which is considered as human visual filter is applied to image denoising areas in this paper. Denoising performance of the proposed transform is compared with those of the derivatives of Gaussian transform being another human visual filter and of discrete wavelet transform in terms of PSNR. With three levels of various noises, experimental results for real images show that the proposed transform has better PSNR performance of 0.41dB than DWT and 0.14dB than DGT.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.927-929
/
2015
With rapid progress in digital technology, demand for multi-media imaging devices is increasing. But noise occurs due to various reasons during the process of acquiring, transmitting or processing the image data. Filters used to remove salt and pepper noise include CWMF and AWMF. In areas where the noise density is high, the removal of noise is undermined. This paper suggests an algorithm that preserves the edge while removing noise using spatial weighted.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.104-107
/
2018
최근 촬영 기기의 기술발전으로 인해 디지털 영상의 해상도가 증가함에 따라 선명한 디지털 영상에 대한 요구가 증가하고 있다. 이러한 요구에도 불구하고 디지털 영상 내 가우시안 잡음 (gaussian noise)은 촬영기기를 통해 영상 획득 및 처리 과정에서 발생하여 화질을 열화 시킨다. 디지털 이미지에서 발생하는 가우시안 잡음을 제거하기 위해서 기존의 저대역 통과 필터 (low-pass filter: LPF)를 사용하면 잡음은 제거되지만, 블러링 현상 (blurring phenomenon)이 나타난다. 이러한 문제점을 개선하기 위해 소벨 연산자 (sobel operator)를 사용하여 영상 내 에지 맵 (edge-map)을 생성하여 에지 영역과 동질 영역을 구분한다. 에지영역에서는 약한 저역 필터 (weak low-pass filter)를 사용하고, 그 외의 이미지 영역에서는 강한 저역 필터 (strong low-pass filter)를 사용하는 알고리듬을 제안하였다. 그리고 다양한 이미지에 대하여 기존 알고리듬과 제안한 알고리듬의 적용한 결과를 통해 주관적 화질 비교하였고 객관적 지표로 최대 신호 대 잡음비 (peak signal-to noise ratio: PSNR)와 구조 유사성 (structural similarity: SSIM)을 사용하여 성능을 평가하였다. 실험결과를 통해 제안된 알고리듬이 잡음 제거 및 외곽선 보존의 우수함을 확인하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.4
/
pp.986-991
/
2014
The PPG signal used in mobile-healthcare and telemedicine system is including the various motion artifact that is signal generated from patient's movements. Recently, although the various methods to remove motion artifacts have been suggested, the performances of these methods are still not satisfactory. Therefore, this s study suggested the novel method based on the Kalman filter and adaptive filter to remove motion artifacts, and we used various motion artifacts to analyze the performance of the proposed method. In the results of experiments, the signal-to-noise ratio of proposed method showed good performace that was 4.8 times of moving average filter.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.4
/
pp.97-105
/
2016
Radiography image detector produces digital images by collecting the charges from the incident x-ray photons and converting it to the voltage signals and then the digital signals. The fixed-pattern noise from the nonuinform amplifier gains in the employed multiple readout circuits. In order to correct the nonuniform gains, a gain-correction technique which is based on the gain map is conventionally used. Since the photon noise remains in the designed gain map, the noise contaminates the gain-corrected images. In this paper, experimental observations are conducted for filtering the remained noise in the gain map, and a filter optimization algorithm is proposed to efficiently remove the noise. For acquired x-ray images from detectors, the filtered gain maps are evaluated and it is shown that optimization algorithm can improve the filtering performance even for relatively strong fixed-pattern noises, which cannot be removed by a simple filter.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.255-257
/
2018
Recently, as the frequency of use of video media increases in various fields, the importance of signal processing is increasing. However, many kinds of noise are generated in the transmission and reception process and affect the information of the signal. For this reason, the noise removal is essential as a preprocessing process. In this paper, we propose an algorithm to remove mixed noise of impulse noise and AWGN. The proposed algorithm restores the image through noise determination and pixel change for efficient noise removal. Unlike the conventional method, noise is removed by minimizing both noise effects. Simulation showed excellent noise removal characteristic results were compared and analyzed using the PSNR for such decisions.
In this letter, we propose a noise reduction method for use in magnetic resonance images that is based on non-local mean and guided image filters. Our method consists of two phases. In the first phase, the guidance image is obtained from a noisy image by using an adaptive non-local mean filter. The spread of the kernel is adaptively by controlled by implementing the concept of edgeness. In the second phase, the noisy images and the guidance images are provided to the guided image filter as input in order to produce a noise-free image. The improved performance of the proposed method is investigated by conducting experiments on standard datasets that contain magnetic resonance images. The results show that the proposed scheme is superior over the existing approaches.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.404-406
/
2021
In modern society, artificial intelligence and automation are being applied in various fields due to the development of the 4th industrial revolution and IoT technology. In particular, systems with a high proportion of image processing, such as automated processes, intelligent CCTV, medical industry, robots, and drones, are susceptible to external factors noise. In this paper, we propose a digital filter based on noise estimation and weights to reconstruct an image in a complex noise environment. The proposed algorithm classifies the types of noise using noise judgment, and determines the noise level of the filtering mask to switch the filtering process to obtain the final output. In order to verify the performance of the proposed algorithm, simulation was conducted, compared with the existing filter algorithm, and the results were analyzed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.05a
/
pp.623-625
/
2012
The restoration of an image corrupted by Gaussian noise is an important task in image processing. There are many kinds of filters are proposed to remove Gaussian noise such as Gaussian filter, mean filter, weighted filter, etc. However, they perform not good enough for denoising and edge preservation. Hence, in this paper we proposed an adaptive weighted filter which considers spatial distance and the estimated variance of noise. We also compared the proposed method with existing methods through the simulation and used MSE(mean squared error) as the standard of judgement of improvement effect.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.4
/
pp.989-995
/
2013
Image degradation caused by the impulse noise is generated in the process of image transmission and so on. It has been studied by many researchers in order to remove these noise. The representative impulse noise removal method includes SM filter. Though SM filter will indicate errors by the increasing of impulse noise density. Therefore, in this paper, in order to preserve the edges of the image, and reduce the distortion of the image, an improved adaptive median filter algorithm is proposed. In the simulation results, the algorithm showed excellent results in all several areas, and the PSNR is used as the criterion of evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.