잡음환경에서의 음성인식 성능향상을 위하여 본 논문에서는 스펙트럼 차감법 이후에 남아 있는 잔여 잡음으로 인한 mismatch를 극복하는 수단으로 기존의 스펙트럼 차감법에서의 flooring factor를 사용하는 대신에 target 잡음레벨을 이용하여 잡음 마스킹을 적용하는 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식을 사용한다. 이 방법은 낮은 SNR에서 개선되지 않는 기존의 잡음 마스킹이 가지는 약점을 극복하고 동시에 스펙트럼 차감버에서의 잔여 잡음 문제를 완화시킬 수 있었다. 특히 시간/주파수 영역 smoothing을 적용함으로써 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식의 적용 이후에도 여전히 남아 있는 일부 잡음을 추가적으로 감소시켰으며, 더욱 향상된 인식성능을 얻을 수 있었다.
실제의 음성 인식 및 음성 통신 등의 음성 처리 시스템에서는 음성 신호를 손상시키는 배경 잡음 신호의 존재로 그 성능이 많이 저하된다. 특히 차량 내와 같은 잡음이 극심한 상황에서는 전처리 부분에서 이러한 잡음을 제거시켜 주어야한다. 본 연구는 자동차 내의 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성 정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 추정하는 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법 사용의 전제 조건은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재한다. 이러한 이유에서 본 연구는 잡은 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화하는 차감법을 제안한다. 이러한 방법은 추정된 잡음 신호의 변화율을 이용하여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 정용한 인식 실험에서도 성능이 향상됨을 확인하였다.
최근 음성인식 시스템의 성능 향상은 많이 개선되었지만 아직도 잡음과 같은 문제로 인하여 문제점이 나타나고 있다. 음성인식 시스템에 있어서의 잡음 문제를 해결함으로써 인식 성능을 향상할 목적으로 본 논문에서는 단시간 스펙트럼에 기초한 주파수특성을 고려한 위너필터를 사용한 잡음 차감 알고리즘을 제안한다. 제안한 알고리즘은 먼저 각 프레임에서 문턱값을 검출한 후에 비묵음 구간과 묵음 구간을 식별한다. 각 프레임에 대해서 비묵음 구간에서는 위너필터법에 의한 잡음 차감법을 실시하며, 묵음 구간에 대해서는 일반적인 잡음 차감법을 적용한다.
본 연구는 자동차내 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재 한다. 이러한 이유는 본 연구는 잡음 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화시키는 차감법을 제안한다. 이 방법은 추정된 잡음 신호의 변화율을 이용하 여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 적용한 인식 실험에서도 성능이 향상됨을 확인하였다.
본 논문에서는 극심한 가산 잡음에 의해 손상된 음성 신호를 스펙트럼 차감법으로 개선할 때, 잡음 스펙트럼 추정을 위한 무음 구간 추정 방법을 제안한다. 스펙트럼 차감법은 잡음을 효과적으로 제거한다고 알려져 있으나, SNR 0 dB 이하의 잡음 환경에서는 무음 구간의 검출이 힘들어 잡음 스펙트럼 추정치의 정확도가 저하된다. 일반화 스펙트럼 차감법의 과차감(oversubtraction)과 잡음 스펙트럼 추정을 반복하여 얻은 무음 구간은 SNR -10 dB~ 0 dB의 낮은 SNR에서도 비교적 정확하며, 프레임 에너지를 이용한 무음 검출 방법에 비해 향상된 성능을 보였다.
본 논문에서는 잡음환경에서의 음성인식을 위하여 잡음의 확률적 특성과 음성모델을 이용하는 확률적 스펙트럼 차감법을 제안한다. 기존의 스펙트럼 차감법은 음성이 존재하지 않는 구간에서 추정한 잡음을 잡음음성에서 차감하여 잡음을 제거함로, 추정한 잡음의 형태가 음성인식기에 입력되는 잡음음성에 포함된 잡음과 상이한 특성을 나타낼 경우에는 효과적인 잡음의 제거가 불가능하다. 이러한 단점을 보완하기 위해서 여러 가지 형태를 가지는 잡음의 원형을 사용하여, 잡음음성에서 잡음을 제거하는 방법을 사용하였다. 잡음의 확률적인 특성을 여러 개의 잡음원형으로 나타내므로, 스펙트럼 차감법은 입력음성에 대해서 확률적으로 수행되어 잡음이 제거된 다중의 스펙트럼을 출력하게 되고, 인식시에는 조용한 환경의 음성으로 학습된 음성모델에 따른 최적의 스펙트럼을 이용하여 인식을 수행한다. 또한 정적인 파라미터와 동적인 특징파라미터를 동시에 고려하여 잡음을 영향을 최소화하므로 보다 효과적인 잡음처리가 가능하다. 제안한 방법의 타당성을 실험적으로 검증하기 위해서, 잡음환경의 음성인식에 적용하였다. SNR 10 dB인 50개의 고립단어에 대한 실험결과, 잡음처리를 하지 않았을 경우 72.75%, 스펙트럼 차감법은 80.25%, 제안한 방법을 사용하였을 경우는 86.25%의 인식률을 얻음으로써, 효과적인 잡음처리 방법임을 확인할 수 있었다.
스펙트럼 차감과정에서 발생하는 잔류 잡음을 제거하는 방법으로 파라메터를 이용하는 적응 스펙트럼 차감법이 있다. 이는 파라메터를 증가시켜 잔류 잡음을 감소시키는 방법이지만 파라메터를 과도하게 증가시킬 경우 음성 왜곡이 발생한다. 따라서, 적절한 파라메터를 추출하기 위하여 SNR이나, 마스킹 효과 등을 이용한 방법들이 제안되었으나 과도한 잡음의 제거로 인한 음성 왜곡 문제와 낮은 SNR에서 부정확한 파라메터의 추출 문제는 여전히 해결해야 할 과제로 남아있다. 본 논문은 기존의 SNR을 이용한 방법에 마스킹 효과를 적용한 수정된 적응 스펙트럼 차감법을 제안한다. 제안된 방법에서는 마스킹 임계치를 이용하여 잡음 추정값을 재 계산 항으로써 SNR을 향상시켰고, 이를 이용하여 파라메터를 추출함으로써 성능을 개선했다 성능평가 결과, 제안한 차감법을 적용한 음성신호를 고립단어 음성인식 시스템에 적용했을 때 기존의 방법 보다 인식률이 향상된 것을 확인할 수 있었다.
잡음환경에서의 음성인식을 위하여 음성에 부가된 잡음을 제거하는 방법에 있어, 기존의 스펙트럼 차감법은 잡음과 음성을 정확히 구별하기 힘들고 정확한 잡음의 특성을 추정할 수 없는 단점이 있다. 또한 웨이브렛 변환영역에서의 잡음제거 방법은 임계값 적용시 저주파 영역보다는 고주파영역에 상대적으로 더 큰 영향을 미쳐 고주파영역에서 신호의 손실이 발생하는 단점이 있다. 본 논문에서는 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법의 단점을 개선하기 위하여 연속 웨이브렛 변환 영역에서 웨이브렛 계수의 스케일별 표준편차로 묵음구간과 음성 구간을 판별하여 끝점을 검출 후, 잡음이 섞인 음성신호를 이산 웨이브렛 변화에 의해 3개의 대역으로 분리하여 각각의 대역 내에서 스펙트럼 차감법을 적용시키는 방법을 제안한다. 끝점을 검출하고 대역을 나눔으로써 스펙트럼 차감을 적응할 잡음 신호의 특성을 정확히 추출할 수 있다. 실험을 통하여 제안한 방법이 기존의 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법보다 신호대 잡음비 및 Itakura-Saito거리 측면에서 향상됨을 확인할 수 있었다.
본 논문에서는 기존에 쓰이던 주파수차감법과 다른 새로운 방법을 제안한다. 본 논문에서 다루는 방법은, 특정한 주파수의 대역에서 음성과 잡음의 우세도를 결정하고, 인간의 청각기와 관련된 매스킹 성질을 기반으로 하여 주파수 차감법을 이용해 제거한다. 이에 대하여 다양한 성능 평가를 하였고, 기존의 일반적인 주파수차감법과 비교하여 보다 효과적으로 잡음처리를 할 수 있음을 알 수 있다.
잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.