• 제목/요약/키워드: 잡음차감

검색결과 68건 처리시간 0.028초

스펙트럼 차감법과 잡음 마스킹의 hybrid 방식을 이용한 잡음환경에서의 음성인식 (Speech Recognition in the Noisy Environments using Hybrid Method of Spectral Subtraction and Noise Masking)

  • 권영욱
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.343-346
    • /
    • 1998
  • 잡음환경에서의 음성인식 성능향상을 위하여 본 논문에서는 스펙트럼 차감법 이후에 남아 있는 잔여 잡음으로 인한 mismatch를 극복하는 수단으로 기존의 스펙트럼 차감법에서의 flooring factor를 사용하는 대신에 target 잡음레벨을 이용하여 잡음 마스킹을 적용하는 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식을 사용한다. 이 방법은 낮은 SNR에서 개선되지 않는 기존의 잡음 마스킹이 가지는 약점을 극복하고 동시에 스펙트럼 차감버에서의 잔여 잡음 문제를 완화시킬 수 있었다. 특히 시간/주파수 영역 smoothing을 적용함으로써 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식의 적용 이후에도 여전히 남아 있는 일부 잡음을 추가적으로 감소시켰으며, 더욱 향상된 인식성능을 얻을 수 있었다.

  • PDF

차량내 잡음 환경에서 적응적 경계값을 이용한 가중치 주파수 차감에 관한 연구 (A Study on Weighted Spectral Subtraction Using Adaptive Threshold In Car Noise Environment)

  • 전선도
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.185-188
    • /
    • 1998
  • 실제의 음성 인식 및 음성 통신 등의 음성 처리 시스템에서는 음성 신호를 손상시키는 배경 잡음 신호의 존재로 그 성능이 많이 저하된다. 특히 차량 내와 같은 잡음이 극심한 상황에서는 전처리 부분에서 이러한 잡음을 제거시켜 주어야한다. 본 연구는 자동차 내의 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성 정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 추정하는 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법 사용의 전제 조건은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재한다. 이러한 이유에서 본 연구는 잡은 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화하는 차감법을 제안한다. 이러한 방법은 추정된 잡음 신호의 변화율을 이용하여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 정용한 인식 실험에서도 성능이 향상됨을 확인하였다.

  • PDF

단시간 스펙트럼에 기초한 주파수특성을 고려한 잡음차감 기법

  • 최재승
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.824-826
    • /
    • 2015
  • 최근 음성인식 시스템의 성능 향상은 많이 개선되었지만 아직도 잡음과 같은 문제로 인하여 문제점이 나타나고 있다. 음성인식 시스템에 있어서의 잡음 문제를 해결함으로써 인식 성능을 향상할 목적으로 본 논문에서는 단시간 스펙트럼에 기초한 주파수특성을 고려한 위너필터를 사용한 잡음 차감 알고리즘을 제안한다. 제안한 알고리즘은 먼저 각 프레임에서 문턱값을 검출한 후에 비묵음 구간과 묵음 구간을 식별한다. 각 프레임에 대해서 비묵음 구간에서는 위너필터법에 의한 잡음 차감법을 실시하며, 묵음 구간에 대해서는 일반적인 잡음 차감법을 적용한다.

  • PDF

차량내 잡음 환경에서 적응적 경계값을 이용한 가중치 주파수 차감에 관한 연구 (A Study on Weighted Spectral Subtraction Using Adaptive Threshold in Car Noise Environment)

  • 전선도;강철호;김종찬;김순협
    • 한국음향학회지
    • /
    • 제17권8호
    • /
    • pp.73-77
    • /
    • 1998
  • 본 연구는 자동차내 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재 한다. 이러한 이유는 본 연구는 잡음 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화시키는 차감법을 제안한다. 이 방법은 추정된 잡음 신호의 변화율을 이용하 여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 적용한 인식 실험에서도 성능이 향상됨을 확인하였다.

  • PDF

반복적 스펙트럼 차감법을 이용한 잡음 음성의 무음 구간 검출 (The detection of Nonspeech Interval in Noisy Speech using Iterative Spectral Subtraction)

  • 조훈영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.391-394
    • /
    • 1998
  • 본 논문에서는 극심한 가산 잡음에 의해 손상된 음성 신호를 스펙트럼 차감법으로 개선할 때, 잡음 스펙트럼 추정을 위한 무음 구간 추정 방법을 제안한다. 스펙트럼 차감법은 잡음을 효과적으로 제거한다고 알려져 있으나, SNR 0 dB 이하의 잡음 환경에서는 무음 구간의 검출이 힘들어 잡음 스펙트럼 추정치의 정확도가 저하된다. 일반화 스펙트럼 차감법의 과차감(oversubtraction)과 잡음 스펙트럼 추정을 반복하여 얻은 무음 구간은 SNR -10 dB~ 0 dB의 낮은 SNR에서도 비교적 정확하며, 프레임 에너지를 이용한 무음 검출 방법에 비해 향상된 성능을 보였다.

  • PDF

확률적 스펙트럼 차감법을 이용한 잡은 환경에서의 음성인식 (Noisy Speech Recognition using Probabilistic Spectral Subtraction)

  • 지상문;오영환
    • 한국음향학회지
    • /
    • 제16권6호
    • /
    • pp.94-99
    • /
    • 1997
  • 본 논문에서는 잡음환경에서의 음성인식을 위하여 잡음의 확률적 특성과 음성모델을 이용하는 확률적 스펙트럼 차감법을 제안한다. 기존의 스펙트럼 차감법은 음성이 존재하지 않는 구간에서 추정한 잡음을 잡음음성에서 차감하여 잡음을 제거함로, 추정한 잡음의 형태가 음성인식기에 입력되는 잡음음성에 포함된 잡음과 상이한 특성을 나타낼 경우에는 효과적인 잡음의 제거가 불가능하다. 이러한 단점을 보완하기 위해서 여러 가지 형태를 가지는 잡음의 원형을 사용하여, 잡음음성에서 잡음을 제거하는 방법을 사용하였다. 잡음의 확률적인 특성을 여러 개의 잡음원형으로 나타내므로, 스펙트럼 차감법은 입력음성에 대해서 확률적으로 수행되어 잡음이 제거된 다중의 스펙트럼을 출력하게 되고, 인식시에는 조용한 환경의 음성으로 학습된 음성모델에 따른 최적의 스펙트럼을 이용하여 인식을 수행한다. 또한 정적인 파라미터와 동적인 특징파라미터를 동시에 고려하여 잡음을 영향을 최소화하므로 보다 효과적인 잡음처리가 가능하다. 제안한 방법의 타당성을 실험적으로 검증하기 위해서, 잡음환경의 음성인식에 적용하였다. SNR 10 dB인 50개의 고립단어에 대한 실험결과, 잡음처리를 하지 않았을 경우 72.75%, 스펙트럼 차감법은 80.25%, 제안한 방법을 사용하였을 경우는 86.25%의 인식률을 얻음으로써, 효과적인 잡음처리 방법임을 확인할 수 있었다.

  • PDF

잡음환경에 강인한 음성인식을 위해 SNR과 마스킹 효과를 이용한 적응 스펙트럼 차감법 (Adaptive Spectral Subtraction Method Using SNR and Masking Effect for Robust Speech Recognition in Noisy Environments)

  • 김태준;김종훈;이경모;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.580-582
    • /
    • 2004
  • 스펙트럼 차감과정에서 발생하는 잔류 잡음을 제거하는 방법으로 파라메터를 이용하는 적응 스펙트럼 차감법이 있다. 이는 파라메터를 증가시켜 잔류 잡음을 감소시키는 방법이지만 파라메터를 과도하게 증가시킬 경우 음성 왜곡이 발생한다. 따라서, 적절한 파라메터를 추출하기 위하여 SNR이나, 마스킹 효과 등을 이용한 방법들이 제안되었으나 과도한 잡음의 제거로 인한 음성 왜곡 문제와 낮은 SNR에서 부정확한 파라메터의 추출 문제는 여전히 해결해야 할 과제로 남아있다. 본 논문은 기존의 SNR을 이용한 방법에 마스킹 효과를 적용한 수정된 적응 스펙트럼 차감법을 제안한다. 제안된 방법에서는 마스킹 임계치를 이용하여 잡음 추정값을 재 계산 항으로써 SNR을 향상시켰고, 이를 이용하여 파라메터를 추출함으로써 성능을 개선했다 성능평가 결과, 제안한 차감법을 적용한 음성신호를 고립단어 음성인식 시스템에 적용했을 때 기존의 방법 보다 인식률이 향상된 것을 확인할 수 있었다.

  • PDF

이산 웨이브렛 변환영역에서의 스펙트럼 차감법을 이용한 잡음제거 (Noise Reduction using Spectral Subtraction in the Discrete Wavelet Transform Domain)

  • 김현기;이상운;홍재근
    • 한국멀티미디어학회논문지
    • /
    • 제4권4호
    • /
    • pp.306-315
    • /
    • 2001
  • 잡음환경에서의 음성인식을 위하여 음성에 부가된 잡음을 제거하는 방법에 있어, 기존의 스펙트럼 차감법은 잡음과 음성을 정확히 구별하기 힘들고 정확한 잡음의 특성을 추정할 수 없는 단점이 있다. 또한 웨이브렛 변환영역에서의 잡음제거 방법은 임계값 적용시 저주파 영역보다는 고주파영역에 상대적으로 더 큰 영향을 미쳐 고주파영역에서 신호의 손실이 발생하는 단점이 있다. 본 논문에서는 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법의 단점을 개선하기 위하여 연속 웨이브렛 변환 영역에서 웨이브렛 계수의 스케일별 표준편차로 묵음구간과 음성 구간을 판별하여 끝점을 검출 후, 잡음이 섞인 음성신호를 이산 웨이브렛 변화에 의해 3개의 대역으로 분리하여 각각의 대역 내에서 스펙트럼 차감법을 적용시키는 방법을 제안한다. 끝점을 검출하고 대역을 나눔으로써 스펙트럼 차감을 적응할 잡음 신호의 특성을 정확히 추출할 수 있다. 실험을 통하여 제안한 방법이 기존의 스펙트럼 차감법 및 웨이브렛 변환을 이용한 잡음제거 방법보다 신호대 잡음비 및 Itakura-Saito거리 측면에서 향상됨을 확인할 수 있었다.

  • PDF

음성/잡음 차등 주파수차감법에 의한 잡음처리 및 기존 주파수차감법과의 성능 비교 (A Speech Enhancement Using Speech/Noise-dominant Frequency Subtraction and Comparing with Normal Frequency Subtraction)

  • 황규연;이경준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.27-30
    • /
    • 2016
  • 본 논문에서는 기존에 쓰이던 주파수차감법과 다른 새로운 방법을 제안한다. 본 논문에서 다루는 방법은, 특정한 주파수의 대역에서 음성과 잡음의 우세도를 결정하고, 인간의 청각기와 관련된 매스킹 성질을 기반으로 하여 주파수 차감법을 이용해 제거한다. 이에 대하여 다양한 성능 평가를 하였고, 기존의 일반적인 주파수차감법과 비교하여 보다 효과적으로 잡음처리를 할 수 있음을 알 수 있다.

  • PDF

잡음에 강한 음성 인식에서 SNR 기준 함수를 사용한 가우시안 함수 변형 및 결정에 관한 연구 (A Study on Variation and Determination of Gaussian function Using SNR Criteria Function for Robust Speech Recognition)

  • 전선도;강철호
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.112-117
    • /
    • 1999
  • 잡음에 강한 음성인식시스템을 위하여 주파수 차감법을 사용할 경우 음성 신호마저 차감하여 신호를 더욱 부식시키는 경우가 존재한다. 본 연구에서는 이러한 경우를 위해서 프레임 마다 추정 잡음과 차감 신호의 SNR(Signal to Noise Ratio) 함수로부터 반연속 HMM(Hidden Markov Model)의 가우시안 함수를 변형 및 결정하는 방법을 제안한다. 이 방법의 타당성을 위해 프레임마다 추정 잡음의 오류 정도가 추정 잡음의 크기와 관계함을 신호 파형 형태로써 보였으며, 이러한 이유에서 SNR을 기준으로 가우시안 함수를 변형 및 결정하게 된다. 실험에서 80㎞/h 이상의 속도로 달리는 차량 내에서 배경 잡음과 음성이 혼합되었을 때의 음성 인식율을 평가하였다. 그 결과 주파수 차감한 경우와 차감하지 않은 경우에 비해 본 논문에서 제안한 SNR에 의한 가우시안 결정 방법이 더욱 향상된 인식율을 보였다.

  • PDF