본 논문에서는 스테레오 정합 과정에서 좌우영상의 대응점(correspondence)를 구할 때 주변에 있는 화소의 변이(disparity)분포와의 경쟁을 통해 잡음에 강인한 변이 검출 알고리즘을 제안한다. 제안한 경쟁적 변이 검출 알고리즘은 스테레오 영상의 정합의 신뢰성을 높이기 위해 초기단계에서 확산과정을 통하여 정합척도(matching measure)를 집속토록 한다. 이는 정합시킬 영상 영역의 크기가 너무 작으면 잡음에 민감해지고 너무 크면 영상이 무디어 지는 단점을 보완하여 영상 영역의 크기가 확산 과정을 통해 해결되도록 한다. 두 번째 단계는 확산을 통하여 집속된 정합척도로부터 최소/최대값을 검출하는 것으로 정합척도 분포를 경쟁적으로 조절함으로써 잡음에 강인한 변이를 검출하도록 한다. 본 논문에서 제시한 방법에 의한 실험결과로부터 자연영상의 경우 정합율이 약 6.96%향상되었다. 이러한 실험결과로부터 제안한 경쟁적 변이검출 알고리즘은 기존의 변이검출 알고리즘보다 더 신뢰성있는 변이검출 방법임을 확인한다.
본 논문에서는 무선 센서 네트워크에서 비 가우시안 채널 환경에서, 결정 융합 검출 규칙에 관한 연구를 수행하였다. 결정 융합에 대한 잡음 분포의 테일 특성이 갖는 영향을 고려하기 위하여 exponentially-tailed 분포를 사용하였다. 페이딩과 잡음 채널로 구성된 병렬 결정 융합 모델로부터 우도비율 기반 융합 규칙을 Neyman-Pearson 평가 하에서 최적화 규칙으로 고려하였으며, 이 최적화 규칙으로부터 높은 신호대 잡음비와 낮은 신호대 잡음비 근사를 통하여 몇 가지 준 최적화 규칙들을 구하였다. 또한 최소한의 사전 정보를 가지고 강인한 검파 성능을 제공하기 위하여 리미터 형태의 간략화 된 준 최적화 검출 규칙을 제안하였다. 모의실험을 통하여 결정 융합 규칙들의 성능을 비교 분석 하였으며 실험 결과들로부터 제안된 리미터 형태의 결정 융합 규칙의 강인성을 입증하였다.
졸음운전은 전체 교통사고 원인 중 큰 비중을 차지하며 그 위험성이 음주운전보다도 크다고 알려져 있다. 따라서 운전자의 졸음을 판단하고 경고하는 시스템 개발에 대한 관심이 높아지고 있으며, 뇌파를 분석하는 것이 운전자의 피로와 졸음을 감지하는데 효과적이라는 연구결과들이 발표되었다. 본 논문은 짧은 시간에 높은 해상도를 가지는 auto-regressive 모델 기법 중 잡음에 강인한 errors-in-variables(EIV) 방법을 이용하여 특징벡터를 추출하고, 다층신경망(multilayer perceptron; MLP)에 적용하여 운전자의 상태를 각성, 천이, 졸음의 세 가지 상태로 분류하는 졸음 감지 시스템을 제안한다. 생체신호의 측정 환경에 따른 성능을 평가하기 위해 높은 진단률을 갖도록 하는 EIV차수를 결정하고, 잡음에 대한 강인성을 확인하기 위해 신호대 잡음비(signal-to-noise ratio; SNR)에 따른 성능을 선형 예측 부호화(linear predictive coding; LPC) 방법과 비교하였다. 이 결과로부터 제안한 EIV와 MLP를 결합한 졸음 감지 시스템은 기존의 LPC와 MLP를 이용한 시스템에 대해 우수한 성능을 얻을 수 있음을 확인하였다.
최근 여행인구가 늘어나면서 캐리어에 대한 관심이 높아지고 있다. 이에 따라 캐리어에 대한 기술이 다양하게 개발되고 있으며, 대표적으로 스마트 캐리어가 많이 사용되고 있다. 그러나 스마트 캐리어는 기울기 센서에 의한 속도 제어시스템을 사용하기 때문에 여러 가지 원인에 의해 잡음 등이 발생한다. 이로 인해 급격한 구동이나 누적오차에 의한 오동작의 소지가 많다. 따라서 본 연구는 기존 시스템의 단점을 보완하기 위해 FIR 저역통과필터를 설계하여 기울기 센서에 적용하여 잡음에 강인한 센싱시스템을 구현하였다.
능동 제어기를 설계하기 위해서는 제어대상 구조물의 수학모델의 구해야한다. 그러나, 무한차원의 구조물에 대하여 정확한 모델을 구하는 것은 불가능하므로 유한차원인 저차원화된 모델을 사용하여 제어기를 설계한다. 그러나, 실제 구조물과 저차원화된 모델사이의 오차에 의하여 제어기의 성능이 저하가 되면 제어기와 구조물의 상호작용, 지진과 같은 오란 등의 불확실성, 지진시 구조물의 동적 특성 변화로 인하여 제어기의 성능이 더욱 저하가 된다. 이러한 저하 요인은 제어기 설계시 요구되는 구조물의 수학모델에 대한 불확실한 요소로 작용하기 때문에 제어성능의 저하를 일으키며 응답의 불안정을 유발하기로 한다. 본 연구에서는 질량형 능동제어기(AMD)가 설치된 3층 건물 모형의 모델 오차에 관한 불확실성을 반영한 강인제어기법을 적용하여 제어성능과 안정성을 실험을 통하여 분석하였다. 강인제어 기법인 $\mu$ 합성법에 요구되는 여러 가지 가중함수인 주파수필터는 건물과 AMD의 특성, 모델 오차, 제어율과 AMD 성능의 , 측정잡음 및 지진외란의 특성 등을 고려하여 정량적으로 선택되었다. $\mu$합성법에 의하여 제어기를 설계하였으며 강인성을 비교하기 위하여 불확실성이 고려되지 않는 LQG 기법에 의한 제어기를 선택하였다. $\mu$합성법은 규정된 불확성에 대하여 제어의 강인성을 가지므로 동적특성이 바뀐 건물모형에 관한 강인성을 LQG 기법에 의한 제어성능과 비교하였다. 그 결과 동적특성이 변화된 건물에 대하여 $\mu$합성법만이 제어의 효율성이 유지되는 강인성을 나타내었다.
본 논문에서는 잡음환경에서 효과적인 음성을 검출하기 위한 새로운 음성 검출 (VAD, voice activity detection) 알고리즘을 제안한다. 통계적 모델에 기반의 Likelihood ratio (LR)를 통하여 도출되는 전역 음성부재확률 (GSAP, global speech absence probability)은 음성검출을 위한 피쳐 (feature) 파라미터로 널리 적용되고 있다. 하지만 신호 대 잡음 비 (SNR, signal-to-noise ratio)가 낮은 잡음환경에서는 정확한 GSAP 추정이 어려운 문제점을 가지고 있다. 따라서 제안된 방법에서는 잡음환경에서 강인한 VAD 알고리즘을 위하여 Teager energy (TE) 기반의 GSAP를 피쳐 파라미터로 적용한다. 제안된 알고리즘은 기존의 방법과 객관적인 실험을 통해 비교 평가한 결과 다양한 배경잡음 환경에서 향상된 성능을 보였다.
본 논문은 wavelet 기반의 watershed를 이용한 효율적인 영상 분할을 기법을 제안한다. 영상 분할을 위해 입력 영상을 wavelet transform을 사용하여 low-resolution 영상을 생성한 후 watershed 알고리즘을 이용해 분할하고, 이를 Inverse wavelet transform함으로써 원 영상으로 복원한다. 복원된 영상을 의미 있는 영역들로 분할하기 위해 wavelet 특징값의 유사성을 두 인접한 영역에 비교하여 병합한다. 실험 결과 제안한 방법은 영상의 잡음에 대한 강인함과 영상의 과분할 문제를 해결할 수 있다.
이 논문에서는 배경 잡음이 포함되는 환경에서 강인한 음성 인식을 하기 위한 전처리 단계로서 쓰이는 목표 음성 향상 방법을 제안한다. 보조 함수 기반의 독립 벡터 분석(Auxiliary-function-based Independent Vector Analysis, AuxIVA) 기법을 기반으로 가중 공분산 행렬에서 시간에 따라 변하는 분산에 의해서 가중치가 결정된다. 목표 음성에 대한 시간-주파수별 기여도를 나타내는 마스크를 통해 분산의 크기를 조절한다. 이러한 마스크는 음성 향상을 위해서 학습된 신경망 혹은 목표 화자로부터의 직선 성분의 기여도를 찾기 위한 확산성으로부터 추정할 수 있다. 이에 더하여 둘러싼 잡음에 대한 출력들은 서로 다차원 독립 성분 분석을 도입하여 의존성을 주어 안정적으로 노이즈 성분을 추출할 수 있다. 이 AuxIVA 기반의 목표 음성 추출 알고리즘은 또한 노이즈에 대해서 비음수 행렬 분해(Non-negative Matrix Factorization, NMF)를 비음수 텐서 분해(Non-negative Tensor Factorization, NTF)로 확장하여 독립 단순 행렬 분석(Independent Low-Rank Matrix Analysis, ILRMA)의 틀에서도 수행될 수 있다. 이러한 확장을 통해서 여전히 잡음 출력 채널에서의 채널간 의존성을 유지할 수 있다. CHiME-4데이터셋에 대한 실험 결과는 소개된 알고리즘에 대한 효과를 보여준다.
다 모델 음성인식기는 잡음환경에서 매우 우수한 성능을 보이는 것으로 평가되고 있다. 그러나 지금까지 다 모델 기반인식기의 성능시험에는 잡음에 대한 적응을 고려하지 않은 일반적인 전처리 방식이 주로 활용하였다. 본 논문에서는 보다 정확한 다 모델 기반인식기에 대한 성능 평가를 위해서 잡음에 대한 강인성이 충분히 고려된 전처리 방식을 채택하였다. 채택된 전처리 알고리듬은 ETSI (European Telecommunications Standards Institute)에서 DSR (Distributed Speech Recognition) 잡음환경을 위해서 제안된 AFE (Advanced Front-End) 방식이며 성능비교를 위해서 DSR 환경에서 좋은 성능을 나타낸 것으로 알려진 MTR (Multi-Style Training)을 사용하였다. 또한, 본 논문에서는 다 모델 기반인식기의 구조를 개선하여 인식성능의 향상을 이루고자 하였다. 기존의 방식과 달리 잡음음성과 가장 가까운 N개의 기준 HMM을 사용하여 기준 HMM의 선택시에 발생할 수 있는 오류 및 잡음신호의 변이에 대한 대비를 하도록 하였으며 각각의 기준 HMM을 훈련을 위해서 다수의 SNR 값을 이용함으로서 구축된 음향모델의 강인성을 높일 수 있도록 하였다. Aurora 2 데이터베이스에 대한 인식실험결과 개선된 다 모델기반인식기는 기존의 방식에 비해서 보다 향상된 인식성능을 보임을 알 수 있었다.
동일한 위치에서 같은 장면을 담고 있지만 서로 다른 시간에 획득된 두 영상의 차를 구하여 이상점의 집합을 검출할 수 있다. 이때 영상들의 서로 다른 밝기 특성에 의한 영향을 줄이기 위하여 다항식 회귀모델에 근거하여 반복적으로 회귀분석을 적용하여 밝기 보정을 하고, 서로 다른 분산의 영향을 줄여서 강인한 검출을 수행하기 위하여 영상 차를 잡음의 분산을 사용하여 정규화 한 잔차(residual)를 사용한다. 따라서 잡음분산의 정확한 추정은 강인한 이상 물체 검출에 매우 중요하다. 본 논문에서는 정확한 추정을 위하여, 실험적으로 구하는 교정상수의 도입을 제안하였으며, 여러 합성 영상에 적용하여 그 성능이 우수함을 확인하였으며, 실제 영상에 적용하여 임의의 문턱 값 선정에도 강인하게 동작하는 이상 물체 검출 알고리듬을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.