• Title/Summary/Keyword: 잠재 자연식생

Search Result 64, Processing Time 0.017 seconds

The Carbon Stock Change of Vegetation and Soil in the Forest Due to Forestry Projects (산림 사업에 의한 산림 식생 및 토양 탄소 변화)

  • Heon Mo Jeong;Inyoung Jang;Sanghak Han;Soyeon Cho;Chul-Hyun Choi;Yeon Ji Lee;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.330-338
    • /
    • 2023
  • To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.

Changes of ecological niche in Quercus serrata and Quercus aliena under climate change (갈참나무와 졸참나무의 기후변화에 따른 생태지위 변화)

  • Yoon-Seo Kim;Jae-Hoon Park;Eui-Joo Kim;Jung-Min Lee;Ji-Won Park;Yeo-Bin Park;Se-Hee Kim;Ji-Hyun Seo;Bo-Yeon Jeon;Hae-In Yu;Gyu-Ri Kim;Ju-Seon Lee;Yeon-Jun Kang;Young-Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.205-212
    • /
    • 2023
  • This study was attempted to find out how the ecological niche and interspecies relationship of Quercus aliena and Q. serrata, which are the main constituents of potential natural vegetation along the riverside of mountains in Korea, under climate change conditions. To this end, soil moisture and soil nutrients were treated with 4 grad ients under climate change conditions with elevated CO2 and temperature, plants we re harvested at the end of the growing season, growth responses of traits were measured, ecological niche breadth and overlap were calculated, and it was compared with that of the control group(ambient condition). In addition, the relationship between the two species was analyzed by principal component analysis using trait values. As a result, the ecological niche breadth of Q. aliena was wider than that of Q. serrata under the moisture environment conditions under climate change. Under nutrient conditions, the ecological niche of the two species were similar. In addition, the ecological overlap for soil moisture of Q. aliena and Q. serrata was wider than the soil nutrient gradient under climate change. The species with traits in which the increase in ecological niche breadth due to climate change occurred more than the decrease was Q. aliena in both water and nutrient gradients. And in the responses of the population level, due to climate change, the adaptability of Q. aliena was higher than that of Q. serrata under the soil moisture condition, but the two species were similar under the nutrient condition. These results mean that the competition between the two species occurs more severely in the water environment under climate change conditions, and at that time, Q. aliena has higher adaptability than Q. serrata.