• Title/Summary/Keyword: 잠재수경성 반응

Search Result 20, Processing Time 0.021 seconds

Studies on Carbonation of Concrete with Low-Calcium Fly Ash and Blast Furnace Slag (플라이 애쉬 및 고로수쇄(高爐水碎)슬래그를 혼화(混和)한 콘크리트의 중성화(中性化)에 관한 연구(研究))

  • Nagataki, Shigeyoshi;Kim, Eun Kyum;Ohga, Hiroyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.229-240
    • /
    • 1987
  • Carbonation of concrete is one type of a chemical process. The reaction mechanism is very complex for the case when low-calcium fly ash and blast furnace slag is added. When fly ash and blast furnace slag is used as an admixture in concrete, they improve compressive strength in the long term, permeability and chemical resistance of concrete by a pozzolanic reaction and latent hydraulic property. On the other hand, the pozzolanic reaction of fly ash and latent hydraulic property of the blast furance slag leads to a reduction of the alkalinity of the concrete. It has been pointed out that this will accelerate the carbonation of the concrete and the corrosion of reinforcement steel embedded in the concrete. In order to clarify the effect of fly ash and blast furance slag on the carbonation of concrete, an accelerated carbonation testing of concrete was carried out by varying the conditions of concrete and the initial curing period in water. The test results of accelerated carbonation were compared to the carbonation test results of concrete stored for 15 years in open air, but protected from rain. As a result, the equation for the rate of carbonation based on compressive strength of concrete was proposed.

  • PDF

Effects of Waste Refractory Powder and Desulfurization Gypsum as Activator on the Properties of High Volume Blast Furnace Slag Mortar with Illite (자극제로서 폐내화물 및 탈황석고가 일라이트 및 고로슬래그 다량 치환 모르타르의 물성에 미치는 영향)

  • Yun, Weon-Keun;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.185-191
    • /
    • 2017
  • The objective of this paper is to investigate the effect of waste refractory powder(WRP) and desulfurization gypsum(FGD) as activators on the flow properties and the strength development of high volume blast furnace slag mortar incorporating illite(BSM) having adsorption and deodorization. To fabricate the BSMs with 60% of W/B, blast furnace slag are incorporated with 45% and 65%, respectively. WRP and FGD are substituted from 5 to 10%. Test results indicate that the flow is decreased with increase of WRP and FGD, while increase of WRP and FGD enhance the compressive strength due to accelerated reaction of blast furnace slag, The use of illite results in a decrease of compressive strength. pH has increasing tendency until 7days, while it has reduction. In this paper, optimal dosages of WRP and FGD are believed to be around 5% each.

The Chloride Diffusion Properties of Concrete with Mineral Admixtures (혼화재를 사용한 콘크리트의 염소이온 확산 특성)

  • Park, Jung-Jun;Koh, Kyoung-Taek;Kim, Do-Gyeum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.239-246
    • /
    • 2004
  • To improve the durability of concrete structure, we usually consider the reduction of water-cement ratio, the increase of concrete cover depth and the use of mineral admixtures. The use of admixtures make concrete more durable and tighten against water in recent papers so it is needed to study more about the relationship between the admixtures and the chloride ion diffusion. Therefore we analyzed the correlation between chloride ion diffusion and physical properties such as compressive strength, void ratio, air permeability of the concrete, and tried to use them as fundamental data for analyzing chloride ion diffusion mechanism of the concrete mixed with mineral admixtures.

Estimation on Durability of 80MPa High Strength Concrete for Lotte Town in Pusan (부산 롯데타운용 80MPa급 초고강도 콘크리트의 내구성 평가)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Park, Eui-Soon;Kim, Gang-Ki;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.307-308
    • /
    • 2009
  • The ultra high strength concrete classed 80 MPa for Lotte Town at pusan has many hydrated materials due to low water to binder ratio and high admixture contents and improved void structure caused by C-S-H gel corresponding to pozzolan and latent hydraulicity of FA and BS. Moreover, durability of the concrete is superior because there was no penetration of carbon dioxide, chloride and chloric ion caused by its fine internal constitution.

  • PDF

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Fundamental Properties of High Strength Concrete Containing Blast Furnace Slag Using CBS-Dust as Admixture (CBS-Dust를 혼화재로 사용한 고로슬래그 미분말 함유 고강도 콘크리트의 기초적 특성)

  • Sin, Se-Jun;Han, Soo-Hwan;Lee, Dong-Joo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.62-63
    • /
    • 2020
  • In this study, fundamental properties of high strength concrete containing blast furnace slag are investigated analyzed according to CBS-Dust replacement rate. As the CBS-Dust replacement rate increased, air content, fluidity and strength decreased, but concrete with 5~10 % of CBS-Dust showed excellent compressive strength in its early age. Therefore, 5~10 % substitution of CBS-Dust on high strength concrete containing blast furnace slag will have a positive effect on reducing waste disposal cost and improving the strength.

  • PDF

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

The Surface Sealing Performance of Film, Air cap and Polystyrene foam for Preventing Carbonation of High-Volume Slag Concrete (고로슬래그 미분말 다량치환 콘크리트의 탄산화 억제를 위한 기밀성 향상재 부착효과)

  • Han, Dongyeop;Kim, Kyunghoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The goal of this research was evaluating and suggesting the solution of preventing carbonation of concrete replaced high-volume of slag. The concrete mixtures were prepared with high-volume slag and recycled aggregate, and the concrete samples were evaluated the carbonation depth with various surface treatment methods. For various surface treatment methods and surface protecting sheets, bonding strength and carbonation depth were measured. Basically, from the results, the carbonation of concrete was completely prevented with any type of surface treatment method and surface protecting sheet as far as the surface treatment materials were remained. Therefore, in this research, it was known and suggested that the easiness of handling and sufficient bonding performance was much important than the quality of surface protecting sheets.

Engineering Characteristics Analysis of High Strength Concrete Followed in replacement ratio increase in Blast Furnace Slag (고로슬래그 미분말의 치환율 증가에 따른 고강도 콘크리트의 공학적 특성 분석)

  • Han, Cheon-Goo;Kim, Seoung Hwan;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.62-68
    • /
    • 2009
  • This research examined engineering properties of high performance concrete, when substitution rate of BS increases. A summary of the test result is as follows. The fluidity of unset concrete increases as the substitution rate of BS increases. The amount of air is reduced more or less, but it seems that enough amount of air can be secured by using more air-entraining agent. Setting time is dramatically delayed as the substitution rate of BS increases. The compressive strength of hardening concrete was weaker than OPC before 28 days passes, due to latent hydraulic property of BS. However, after 28 days, it shows same or better property, which is exceptional for the practical uses of hyper strength concrete. Changes in drying shrinkage rate is quite much, because when hydration happens, the amount of free water in concrete increased as W/B gets larger. The amount of drying shrinkage increases as BS substitution rate increases, but every composition shows less than $-500{\times}10^{-6}$, which is relatively fine.

  • PDF

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.