본 논문에서는 입력에 따라 합성곱 레이어 간의 잔차 연결을 변화시키는 동적 잔차 연결을 활용해 고해상도 복원 (Super-resolution) 작업을 위한 경량 네트워크를 설계하는 방법을 제안한다. 먼저, 동적 잔차 연결을 입력에 따라 변화시킬 수 있도록 경량화된 (Lightweight) 모듈을 설계하는 방법을 제안한다. 또한 이렇게 설계한 모듈로부터 얻은 잔차 연결에 대한 정보를 토대로 네트워크를 설계하는 방법을 제시한다. 제안된 방법을 통해 설계된 고해상도 복원 작업을 위한 네트워크는 적은 파라미터로도 입력에 따라 적응적으로 네트워크의 구조를 변화시킬 수 있어 효울적으로 다양한 입력 영상을 처리할 수 있다.
본 논문에서는 자막방송 제공을 위해 방송콘텐츠를 이해하는 방법으로 잔차 합성곱 순환신경망 기반 음향 사건 분류 기법을 제안한다. 제안된 기법은 잔차 합성곱 신경망과 순환 신경망을 연결한 구조를 갖는다. 신경망의 입력 특징으로는 멜-필터벵크 특징을 활용하고, 잔차 합성곱 신경망은 하나의 스템 블록과 5개의 잔차 합성곱 신경망으로 구성된다. 잔차 합성곱 신경망은 잔차 학습으로 구성된 합성곱 신경망과 기존의 합성곱 신경망 대비 특징맵의 표현 능력 향상을 위해 합성곱 블록 주의 모듈로 구성한다. 추출된 특징맵은 순환 신경망에 연결되고, 최종적으로 음향 사건 종류와 시간정보를 추출하는 완전연결층으로 연결되는 구조를 활용한다. 제안된 모델 훈련을 위해 라벨링되지 않는 데이터 활용이 가능한 평균 교사 모델을 기반으로 훈련하였다. 제안된 모델의 성능평가를 위해 DCASE 2020 챌린지 Task 4 데이터 셋을 활용하였으며, 성능 평가 결과 46.8%의 이벤트 단위의 F1-score를 얻을 수 있었다.
본 논문에서는 청각장애인에게 자막방송을 제공하기 위하여 오디오 콘텐츠에 등장하는 음향 사건을 분류하는 기법을 제안한다. 제안된 기법은 복수의 잔차 신경망(ResNet)을 연결하는 연쇄잔차(concatenated residual) 신경망 구조를 갖는다. 신경망의 입력 특징을 위해 음성의 멜-주파수 켑스트럼 벡터를 다수의 프레임으로 결합하여 형성한 2 차원 이미지와 전체 프레임에 대한 멜-주파수 켑스트럼 벡터들로부터 얻은 1 차원의 통계 특징벡터를 얻는다. 각각의 입력은 2 차원 잔차 신경망과 1 차원 잔차 신경망으로 모델링되고, 두 개의 잔차 신경망을 연쇄연결(concatenation)하는 구조를 가진 연쇄잔차 신경망으로 구성된다. 성능평가를 위해 수집된 데이터셋으로부터 6-fold 교차검증을 통해 평가한 결과, 85.48%의 분류 정확도를 얻을 수 있었다.
본 논문에서는 BERT가 합성된 새로운 Transformer 구조를 제안한 선행연구를 보완하기 위해 cardinality residual connection을 적용한 새로운 구조의 모델을 제안한다. Transformer의 인코더와 디코더의 셀프어텐션에 BERT를 각각 합성한 모델의 잔차연결을 수정하여 학습 속도와 번역 성능을 개선하고자 한다. 그리고 가중치를 다르게 부여하는 실험으로 어텐션을 선택하는 효과적인 방법을 제시하고 원문의 언어에 맞는 BERT를 사용하는 이유를 설명한다. IWSLT14 독일어-영어 말뭉치와 AI hub에서 제공하는 영어-한국어 말뭉치를 이용한 실험에서는 제안하는 방법의 모델이 기존 모델에 비해 더 나은 학습 속도와 번역 성능을 보였다.
최근, 단일 이미지 초해상도 복원 기법(super-resolution)에서 컨볼루션 신경망 모델은 매우 성공적이다. 잔여 학습 기법은 컨볼루션 신경망 훈련의 안전성과 성능을 향상시킬 수 있다. 본 논문은 저해상도 입력 이미지에서 고해상도 목표 이미지로 비선형 매핑 학습을 위해 고밀도 스킵 연결(dense skip-connection)을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 복원 기법을 제안한다. 제안하는 단일 이미지 초해상도 복원 기법은 고밀도 스킵 연결 방식을 통해 재귀 잔차 학습 방법을 채택해서 깊은 신경망에서 학습이 어려운 문제를 완화하고 더 쉽게 최적화하기 위해 신경망 안에 불필요한 레이어를 제거한다. 제안하는 방법은 매우 깊은 신경망의 사라지는 변화도(vanishing gradient) 문제를 완화할 뿐만 아니고 낮은 복잡성으로 뛰어난 성능을 얻음으로써 단일 이미지 초해상도 복원 기법의 성능을 향상시킨다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬 보다 결과가 더 우수함을 보인다.
본 논문에서는 시맨틱 분할을 위한 조건부 생성적 적대 신경망 기반의 이미지 대 이미지 변환 접근법을 제안한다. 시맨틱 분할은 동일한 개체 클래스에 속하는 이미지 부분을 함께 클러스터링하는 작업이다. 기존의 픽셀별 분류 방식과 달리 제안하는 방식은 픽셀 회귀 방식을 사용하여 입력 RGB 이미지를 해당 시맨틱 분할 마스크로 구문 분석한다. 제안하는 방법은 Pix2Pix 이미지 합성 방식을 기반으로 하였다. 잔차 연결이 훈련 프로세스를 가속화하고 더 정확한 결과를 생성하므로 생성기 및 판별기 아키텍처 모두에 대해 잔여 연결 기반 컨볼루션 신경망 아키텍처를 사용하였다. 제안하는 방법은 NYU-depthV2 데이터셋를 이용하여 학습 및 테스트 되었으며 우수한 mIOU 값(49.5%)을 달성할 수 있었다. 또한 시맨틱 객체분할 실험에서 제안한 방법과 현재 방법을 비교하여 제안한 방법이 기존의 대부분의 방법들보다 성능이 우수함을 보였다.
본 연구는 디지털 기술과 인공지능의 발전을 배경으로, ResNet 모델을 활용하여 얼굴 인식 및 나이 예측 시스템을 개발하고 평가한다. ResNet의 잔차 학습과 스킵 연결 기능은 깊은 신경망에서 발생할 수 있는 기울기 소실 문제를 해결하여 모델의 학습 효율을 높이는 데 중요한 역할을 한다. 또한 All-Age-Faces Dataset을 이용하여 나이 예측에서 아시아 인종에 대한 편향 없이 고르게 좋은 성능을 보여주는 것을 목표로 한다.
신항과 낙동강 하구역의 접점인 연결잔교를 통해 소통되는 해수의 수리적인 특성을 파악하기 위하여 연결잔교부에서 현장관측을 실시하고 두 해역간의 상호작용을 해석하고자 하였다. 현장조사 결과로서 연결잔교상의 최대 유속은 1차관측시 13.18 cm/sec, 2차관측시 30.80 cm/sec를 나타내었다. 해수소통량 계산결과는 1차 관측기간 동안 단위시간당 해수소통량은 $184.71\;m^3/sce$이고, 잔차해수소통량은 $59.74\;m^3/sec$로 신항만에서 낙동강 하구역 방향으로 유출되었다. 또한 2차 관측기간 동안 단위시간당 해수소통량은 $331.15\;m^3/sec$이고, 잔차해수소통량은 $28.88\;m^3/sec$로 낙동강 하구역에서 신항만 방향으로 유출되었다.
본 연구에서는 부산신항과 낙동강 하구역의 접점인 연결잔교를 통해 소통되는 해수의 수리적인 특성을 파악하고 현장관측결과와 수치모형실험을 통해 연결잔교부를 통한 물질수송특성을 파악하였다. 그 결과를 요약하면 다음과 같다. 현장조사를 통한 해수수송량 관측결과는 1차 관측기간 동안 단위시간당 해수수송량은 $184.71m^3/sce$이고, 잔차해수수송량은 $59.74m^3/sec$로 신항만에서 낙동강 하구역 방향으로 유출되었다. 또한 2차 관측기간 동안 단위시간당 해수수송량은 $331.15m^3/sec$이고, 잔차해수수송량은 $28.88m^3/sec$로 낙동강 하구역에서 신항만 방향으로 유출되었다. 연결잔교 주변의 수심변화를 고려한 3가지 시나리오의 수치모의 결과에서 신항만 지역에 항내매몰로 수심이 저감된 경우에는 약 $0.7\sim18.4%$ 물질수송량이 저감하게 되며, 해수소통 향상을 위해 낙동강 하구역 지역에 수로준설(수심 5m 가정)을 할 경우 약 $3.5\sim21.9%$의 물질수송량이 증가하였다.
영상 잡음 제거는 잡음으로 저하된 영상으로부터 잡음 없는 영상을 복원하는 기술이다. 최근 영상 처리에 딥러닝을 사용한 학습 기반 방법 중 저수준 컴퓨터 비전 분야에 고수준 영상 정보를 활용하는 접근이 있었다. 본 논문에서는 고수준 영상 정보인 영상 분할 지도를 활용하여 영상 속 가산 백색 잡음 제거 연구를 진행하였다. 잔차 연결을 활용한 구조의 인공신경망 모델에 잡음 영상, 잡음 수준 지도, 영상 분할 지도를 입력으로 넣어 고수준 영상 정보를 활용할 수 있게 하였다. 본 논문에서 제안한 인공신경망을 Outdoor Scene Dataset과 CBSD68 Dataset에 대해 확인해본 결과, PSNR과 인지적인 측면에서 DnCNN과 FFDNet보다 성능이 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.