• Title/Summary/Keyword: 잔차연결

Search Result 23, Processing Time 0.028 seconds

Super-resolution Network Using Dynamic Residual Connection (동적 잔차 연결을 활용한 고해상도 복원 네트워크)

  • Park, Karam;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.106-109
    • /
    • 2021
  • 본 논문에서는 입력에 따라 합성곱 레이어 간의 잔차 연결을 변화시키는 동적 잔차 연결을 활용해 고해상도 복원 (Super-resolution) 작업을 위한 경량 네트워크를 설계하는 방법을 제안한다. 먼저, 동적 잔차 연결을 입력에 따라 변화시킬 수 있도록 경량화된 (Lightweight) 모듈을 설계하는 방법을 제안한다. 또한 이렇게 설계한 모듈로부터 얻은 잔차 연결에 대한 정보를 토대로 네트워크를 설계하는 방법을 제시한다. 제안된 방법을 통해 설계된 고해상도 복원 작업을 위한 네트워크는 적은 파라미터로도 입력에 따라 적응적으로 네트워크의 구조를 변화시킬 수 있어 효울적으로 다양한 입력 영상을 처리할 수 있다.

  • PDF

Residual Convolutional Recurrent Neural Network-Based Sound Event Classification Applicable to Broadcast Captioning Services (자막방송을 위한 잔차 합성곱 순환 신경망 기반 음향 사건 분류)

  • Kim, Nam Kyun;Kim, Hong Kook;Ahn, Chung Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.26-27
    • /
    • 2021
  • 본 논문에서는 자막방송 제공을 위해 방송콘텐츠를 이해하는 방법으로 잔차 합성곱 순환신경망 기반 음향 사건 분류 기법을 제안한다. 제안된 기법은 잔차 합성곱 신경망과 순환 신경망을 연결한 구조를 갖는다. 신경망의 입력 특징으로는 멜-필터벵크 특징을 활용하고, 잔차 합성곱 신경망은 하나의 스템 블록과 5개의 잔차 합성곱 신경망으로 구성된다. 잔차 합성곱 신경망은 잔차 학습으로 구성된 합성곱 신경망과 기존의 합성곱 신경망 대비 특징맵의 표현 능력 향상을 위해 합성곱 블록 주의 모듈로 구성한다. 추출된 특징맵은 순환 신경망에 연결되고, 최종적으로 음향 사건 종류와 시간정보를 추출하는 완전연결층으로 연결되는 구조를 활용한다. 제안된 모델 훈련을 위해 라벨링되지 않는 데이터 활용이 가능한 평균 교사 모델을 기반으로 훈련하였다. 제안된 모델의 성능평가를 위해 DCASE 2020 챌린지 Task 4 데이터 셋을 활용하였으며, 성능 평가 결과 46.8%의 이벤트 단위의 F1-score를 얻을 수 있었다.

  • PDF

Sound Event Classification Based on Concatenated Residual Network Applicable to Closed Captioning Services for the Hearing Impaired (청각장애인용 자막방송 서비스를 위한 연쇄잔차 신경망 기반 음향 사건 분류 기법)

  • Kim, Nam Kyun;Park, Dong Keun;Kim, Jun Ho;Kim, Hong Kook;Ahn, Chung Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.472-475
    • /
    • 2020
  • 본 논문에서는 청각장애인에게 자막방송을 제공하기 위하여 오디오 콘텐츠에 등장하는 음향 사건을 분류하는 기법을 제안한다. 제안된 기법은 복수의 잔차 신경망(ResNet)을 연결하는 연쇄잔차(concatenated residual) 신경망 구조를 갖는다. 신경망의 입력 특징을 위해 음성의 멜-주파수 켑스트럼 벡터를 다수의 프레임으로 결합하여 형성한 2 차원 이미지와 전체 프레임에 대한 멜-주파수 켑스트럼 벡터들로부터 얻은 1 차원의 통계 특징벡터를 얻는다. 각각의 입력은 2 차원 잔차 신경망과 1 차원 잔차 신경망으로 모델링되고, 두 개의 잔차 신경망을 연쇄연결(concatenation)하는 구조를 가진 연쇄잔차 신경망으로 구성된다. 성능평가를 위해 수집된 데이터셋으로부터 6-fold 교차검증을 통해 평가한 결과, 85.48%의 분류 정확도를 얻을 수 있었다.

  • PDF

The Cardinality Residual Connection Method Applied to Transformer Model combining with BERT Layer (BERT layer를 합성한 Transformer 모델에 적용한 Cardinality Residual connection 방법)

  • Choi, Gyu-Hyeon;Lee, Yo-Han;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.27-31
    • /
    • 2020
  • 본 논문에서는 BERT가 합성된 새로운 Transformer 구조를 제안한 선행연구를 보완하기 위해 cardinality residual connection을 적용한 새로운 구조의 모델을 제안한다. Transformer의 인코더와 디코더의 셀프어텐션에 BERT를 각각 합성한 모델의 잔차연결을 수정하여 학습 속도와 번역 성능을 개선하고자 한다. 그리고 가중치를 다르게 부여하는 실험으로 어텐션을 선택하는 효과적인 방법을 제시하고 원문의 언어에 맞는 BERT를 사용하는 이유를 설명한다. IWSLT14 독일어-영어 말뭉치와 AI hub에서 제공하는 영어-한국어 말뭉치를 이용한 실험에서는 제안하는 방법의 모델이 기존 모델에 비해 더 나은 학습 속도와 번역 성능을 보였다.

  • PDF

Single Image Super-resolution using Recursive Residual Architecture Via Dense Skip Connections (고밀도 스킵 연결을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 기법)

  • Chen, Jian;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.633-642
    • /
    • 2019
  • Recently, the convolution neural network (CNN) model at a single image super-resolution (SISR) have been very successful. The residual learning method can improve training stability and network performance in CNN. In this paper, we propose a SISR using recursive residual network architecture by introducing dense skip connections for learning nonlinear mapping from low-resolution input image to high-resolution target image. The proposed SISR method adopts a method of the recursive residual learning to mitigate the difficulty of the deep network training and remove unnecessary modules for easier to optimize in CNN layers because of the concise and compact recursive network via dense skip connection method. The proposed method not only alleviates the vanishing-gradient problem of a very deep network, but also get the outstanding performance with low complexity of neural network, which allows the neural network to perform training, thereby exhibiting improved performance of SISR method.

Semantic Object Segmentation Using Conditional Generative Adversarial Network with Residual Connections (잔차 연결의 조건부 생성적 적대 신경망을 사용한 시맨틱 객체 분할)

  • Ibrahem, Hatem;Salem, Ahmed;Yagoub, Bilel;Kang, Hyun Su;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1919-1925
    • /
    • 2022
  • In this paper, we propose an image-to-image translation approach based on the conditional generative adversarial network for semantic segmentation. Semantic segmentation is the task of clustering parts of an image together which belong to the same object class. Unlike the traditional pixel-wise classification approach, the proposed method parses an input RGB image to its corresponding semantic segmentation mask using a pixel regression approach. The proposed method is based on the Pix2Pix image synthesis method. We employ residual connections-based convolutional neural network architectures for both the generator and discriminator architectures, as the residual connections speed up the training process and generate more accurate results. The proposed method has been trained and tested on the NYU-depthV2 dataset and could achieve a good mIOU value (49.5%). We also compare the proposed approach to the current methods in semantic segmentation showing that the proposed method outperforms most of those methods.

A Study on the Age Prediction Model Using ResNet (ResNet을 이용한 나이 예측 모델 연구)

  • Ji-Hun Kim;Young-Tae Shin
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.803-806
    • /
    • 2024
  • 본 연구는 디지털 기술과 인공지능의 발전을 배경으로, ResNet 모델을 활용하여 얼굴 인식 및 나이 예측 시스템을 개발하고 평가한다. ResNet의 잔차 학습과 스킵 연결 기능은 깊은 신경망에서 발생할 수 있는 기울기 소실 문제를 해결하여 모델의 학습 효율을 높이는 데 중요한 역할을 한다. 또한 All-Age-Faces Dataset을 이용하여 나이 예측에서 아시아 인종에 대한 편향 없이 고르게 좋은 성능을 보여주는 것을 목표로 한다.

Analysis of Seawater Transport based on Field Measurements at Pier-bridge between Busan New-port and the Nakdong River Estuary (부산 신항-낙동강 하구역 연결잔교부의 물질수송 해석(I) - 현장조사를 통한 잔교부 해수소통량 평가 -)

  • Lee, Young-Bok;Tawaret, Attapon;Kim, Heon-Tae;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2008
  • This study analyzed the characteristics of sea water transport between Busan New-port and the Nakdong River estuary. A current meter was placed on a pier bridge and the current velocity was analyzed to determine the flow direction. Water temperature, salinity, turbidity, and tide were also measured to determine the characteristics of sea water and to describe the tidal current between the two regions. The results indicated that the dominant outflow direction of the ebb tidal current was from the Nakdong River estuary to Busan New-port. Conversely, during a flood tide, the dominant direction was from Busan New-port to the Nakdong River estuary. The maximum current speed during the first and second field measurements was about 13.18 and 30.80 cm/ sec, respectively. During the first field measurement, the total volume of sea water transport was $184.71\;m^3/sec$ and the residual volume transport was $+59.74\;m^3/sec$. By contrast, during the second field measurement, the respective values were $331.15\;m^3/sec$ and $28.88\;m^3/sec$.

  • PDF

Analysis of the material transportation under water-depth variation scenario at pier-bridge of Busan New-port (부산신항 연결잔교부의 해저수심변화 시나리오에 의한 물질수송량 해석)

  • Lee, Young-Bok;Ryu, Seung-Woo;Ryu, Cheong-Ro;Tawaret, Attapon;Yoon, Han-Sam
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.61-67
    • /
    • 2008
  • This study analyzes the characteristics of material transportation between Busan new-port and Nakdong river estuary. Measurements of water temperate, salinity, turbidity, and tide is also analyzed to determine the characteristics of sea water and described the tidal current between two regions. For the purpose of indicating characteristics of tidal current numerical modeling is used. From the observed results, the total volume transport of sea water calculations revealed $184.71m^3/sec$ and residual volume transport was $(+)59.74m^3/sec$ during the 1st field measurement, and the total volume transport was $331.15m^3/sec$ and residual volume transport was $(-)28.88m^3/sec$ during the 2nd. The numerical simulation for three different topography cases are calculated. The results are summarized as follows: 1) The volume of material transportation about $0.7\sim18.4%$ is decreased as the depth of Busan new-port decrease (10 m). 2) The volume of material transportation about $3.5\sim21.9%$ is increased, as channel(water depth is 5 m) constructed to the Nakdong river estuary direction.

  • PDF

Image Denoising Using Image Segmentation Map (영상 분할 지도를 활용한 영상 잡음 제거)

  • Yang, Haeyoon;Jang, Yeong Il;Soh, Jae Woong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.297-300
    • /
    • 2021
  • 영상 잡음 제거는 잡음으로 저하된 영상으로부터 잡음 없는 영상을 복원하는 기술이다. 최근 영상 처리에 딥러닝을 사용한 학습 기반 방법 중 저수준 컴퓨터 비전 분야에 고수준 영상 정보를 활용하는 접근이 있었다. 본 논문에서는 고수준 영상 정보인 영상 분할 지도를 활용하여 영상 속 가산 백색 잡음 제거 연구를 진행하였다. 잔차 연결을 활용한 구조의 인공신경망 모델에 잡음 영상, 잡음 수준 지도, 영상 분할 지도를 입력으로 넣어 고수준 영상 정보를 활용할 수 있게 하였다. 본 논문에서 제안한 인공신경망을 Outdoor Scene Dataset과 CBSD68 Dataset에 대해 확인해본 결과, PSNR과 인지적인 측면에서 DnCNN과 FFDNet보다 성능이 향상되는 것을 확인하였다.

  • PDF