• Title/Summary/Keyword: 잔류 휨강도

Search Result 41, Processing Time 0.021 seconds

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

Development of Strengthening Method Using the Vacuum Impregnation in RC Members (진공함침을 이용한 철근콘크리트 부재에서의 보강공법 개발)

  • Yi, Seong Tae;Song, Yeong Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.11-18
    • /
    • 2012
  • Deterioration and weakening is advanced in compliance with flowing of time and the change of environment in RC structures. Consequently, strength and serviceability decreases, finally, the life of infrastructure shortens and safety characteristics decreases. Accordingly, in this study, a new method to develop a strengthening method using the vacuum impregnation, which increases durability of the infrastructure occurred the safety reduction due to the performance degradation and increases the life of infrastructure by improving the durability compared to the existing method, was planned. For flexural tests, the maximum strength was a low-end order from high order as follows: (1) vacuum impregnation with 2 fold reinforcement, (2) fiber sheet 2 fold reinforcement, (3) vacuum impregnation with 1 fold reinforcement, (4) fiber sheet 1 fold reinforcement, and (5) nothing. Also, for confirmation results about durability, when the fiber reinforcement is being exposed to the inferior environment, the remaining tensile strength exceeded of 90% or more for all environments. This is because the reinforcement used in this research shows the excellent resistance in severe environment.

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Studies on the Residual Bending Strength of Burned Wood treated with Fire-retardant Chemicals (내화처리연소목(耐火處理燃燒木)의 잔류(殘留) 휨강도에 관(關)한 연구(硏究))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.10-19
    • /
    • 1984
  • The $3{\times}3{\times}30$ ($cm^3$) sized lumbers of Populus alba-grandulosa L. were treated with four fire-retardant solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate and aluminium chloride for 1, 15, 30, and 60 minutes and 1, 3, and 7 days. Thereafter they were air-dried and burned at high temperature about $1,800^{\circ}C$ and for short time of five minutes. This study estimated the relationship between absorbed chemical amounts and rate of weight loss or residual bending strength of these burned lumbers. The results were as follows: 1) In absorption amount of fire-retardant chemicals, diammonium phosphate showed the largest, aluminium chloride the smallest, but monoammonium phosphate and ammonium sulfate showed similar level. 2) The absorption amount of chemicals was decreased with the increase of specific gravity in the same species except aluminium chloride. 3) The rate of weight loss was decreased as the absorption amount of chemicals increased, especially monoammonium phosphate was most effective. 4) The MOR value of the residual bending strength was increased as the absorption amount of chemicals increased and especially monoammonium phosphate showed the most efficient effect. 5) Aluminium chloride showed more striking increase of MOR value of residual bending strength with the increase of absorption amount than any other chemical, therefore its MOR value was similar to the maximum MOR value of the most effective monoammonium phosphate. 6) The correlation between weight loss and MOR value of the residual bending strength was negative and aluminium chloride showed the most striking negative relation, but the others showed similar trends. 7) The correlation between work to proportional limit and absorption amount of chemicals was positive and the degree of increase in work to proportional limit was most in aluminium chloride, and the next, in monoammonium phosphate and diammonium phosphate in turn. 8) The correlation between work to maximum load and absorption amount of chemicals showed positive and diammonium phosphate revealed the best result and aluminium chloride showed better results than other two chemicals.

  • PDF

Behavior of PSC Composite Bridge with Precast Decks (프리캐스트 바닥판 PSC 합성거더 교량의 거동)

  • Chung, Chul Hun;Hyun, Byung Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.873-880
    • /
    • 2006
  • PSC composite bridge with precast decks which was designed by the proposed horizontal shear equation was fabricated. Fatigue test was performed to evaluate the endurance of shear connection and the behavior of PSC composite bridge. After all the fatigue loading were applied, no crack and no residual slip were occurred. The flexural stiffness of PSC composite bridge was maintained the initial value, and demage of shear connection was not occurred. To verify the applicability of horizontal shear equation and shear connection detail and to evaluate the strength of PSC composite bridges, static test was also executed. PSC composite bridges with precast decks had 2.08 safety factor which was the ratio of crack to serviceability load and showed ductile behavior after ultimate load. Test results showed that the proposed design equation of the shear connection gave reasonable horizontal shear connection design. Fast and easy construction would be achieved using the suggested precast system.