• 제목/요약/키워드: 잔류 유연성 행렬

검색결과 5건 처리시간 0.018초

유연 구조물의 능동 반력 제어기 설계 (Active Control of Reaction Forces for Flexible Structures)

  • 김주형
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.68-75
    • /
    • 2001
  • A method for actively controlling dynamic reaction forces in flexible structures subject to persistent excitations is presented. Since reaction forces are not directly measured in flexible structures, reaction forces are estimated by using the Kalman filter. The estimated reaction force is used as an error signal in the adaptive feedforward disturbance cancellation controller. In order to compensate the static effect of the truncated modes in the reaction forces, the residual flexibility matrix is used with the Kalman filter. The paper presents the formulation of the reaction forces in conjunction with the Kalman filter estimator and the adaptive feedforward controller. The results show that the dynamic reaction forces at its supports in a flexible beam test rir are well suppressed.

  • PDF

유연 구조물에서 반력 평가를 위해 요구되는 모드의 수 (On the Number of Modes Required to Observe Forces in Flexible Structures)

  • 김주형;김상섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.562-567
    • /
    • 2001
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility, a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements with a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

  • PDF

유연 구조물에서 반력 평가를 위해 요구되는 모드의 수 (On the Number of Modes Required to Observe Forces in Flexible Structures)

  • 김주형;김상섭
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.150-157
    • /
    • 2002
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility. a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements wish a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

진동에서 생기는 동적 하중을 줄이기 위한 능동 최적 제어 (Active Optimal Control Techniques for Suppressing Dynamic Load in Vibration)

  • 김주형;김상섭
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.749-757
    • /
    • 2002
  • Excessive vibration in flexible structures is a problem encountered in many different fields, causing fatigue of structural components. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuate vibrations. Recently active techniques have been developed to enhance vibration control performance beyond that provided by their passive counterparts. Most often, the focus of active control methods has been to suppress structure displacements. In cases where vibration results in structure failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic loads which would be even more harmful to supports) . This paper presents two optimal control methods for attenuating steady state vibrations in flexible structures. One method minimizes shaft displacements while another minimizes dynamic reaction forces. The two methods are applied to a model of a typical flexible structure system and their results are compared. It is found that displacement minimization can increase loads, while load minimization decreases loads.

회전 물체의 동적 하중에 대한 능동 진동 제어 (Dynamic Load Suppression in Active Vibration Control of Rotating Machinery)

  • 김주형;김상섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1126-1131
    • /
    • 2001
  • Excessive vibration in rotating machinery is a problem encountered in many different fields, causing such difficulties as fatigue of machinery components and failure of supporting bearings. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuated vibrations. Recently active techniques have been developed to provide vibration control perform beyond that provided by their passive counters. Most often, the focus of active control methods has been to suppress rotating machinery displacements. In cases where vibration results in bearing failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic bearing loads which would be even more harmful to bearings). This paper presents two optimal control methods for attenuating steady state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads.

  • PDF