• Title/Summary/Keyword: 잔류침하

Search Result 57, Processing Time 0.022 seconds

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

Settlement Data Acquisition and Analysis Technique by Personal Computer (Personal Computer를 이용한 침하 안정 관리기법)

  • 송정락;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.332-347
    • /
    • 1991
  • Accurate prediction of future settlement is essential for the settlement control of soft soil by pre-loading method. To predict future settlement in clayey soft soils, several methods like Asaoka method, Hyperbolic Method and Hoshino method are currently being used. These methods predict the future sett1ement by mathmatical treatment of the measured settlement data on the basis of consolidtion theory and empiricism. But the correlation coefficient between the measured and the predicted settlement was relatively low (0.8~0.9). Also, the prediction of future settlemet for the design load is very difficult. In this article, the measured field settlement data was treated as the the field consolidation test. Hence, condolidation coefficient(Cv) and compression index(Cc) was evaluated from the field settlement data. Cv and Cc values from field data was used to calculate the degree of consolidation and settlement at desired time. By this method, the correlation coefficent between the measured and the predicted settlement was significantly increased(0.97~0.99). Also the settlement by the design load after the improvement of soft soil could be predicted reasonably. This method is quite rational and sound but it requires thousands of calculation steps. Today, by the aid of low priced personal computers above mentioned technique could be used much acre economically and effectively than conventional methods. This article presented the mechanisms and capacities of this method and demonstrated the enhanced correlation coefficient when applied to actual field settlement data.

  • PDF

Ground Subsidence Measurements of Noksan National Industrial Complex using C-band Multi-temporal SAR images (C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측)

  • Cho, Minji;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Established in the lower reaches of the Nakdong river in Busan, the Noksan national industrial complex is one of the deepest soft ground areas in Korea. In case of the costal landfill having deep soft ground, there is a significant residual settlement over a long period of time. In this study, there was observed ground subsidence occurred in the Noksan national industrial complex from September 2002 to April 2007 by applying DInSAR and SBAS time series method using RADARSAT-1 and Envisat SAR datasets. As a result, it was calculated that ground subsidence developed at the velocity of about maximum 10 cm/yr and mean 6 cm/yr at the eastern center, west, western center and southern area contiguous on the coastline of the study area during the period from September 2002 to April 2007. In addition, the RADARSAT-1 average displacement map has been compared with the total displacement map observed by accurate magnetic probe extensometer during the period from 2001 to 2002. Since the time series displacement has shown a linear trend mostly, we consider that continuous monitoring should be needed until the ground subsidence of the study area has been stabilized.

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

Long-term Settlement Prediction of Railway Concrete Track Based on Recurrent Neural Network (RNN) (순환신경망을 활용한 콘크리트궤도의 장기 침하 거동 예측)

  • Kim, Joonyoung;Lee, Su-Hyung;Choi, Yeong-Tae;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.5-14
    • /
    • 2020
  • The railway concrete track has been increasingly adopted for high-speed train such as KTX due to its high running stability, improved ride quality for the passengers, and low maintenance cost. However, excessive settlement of the railway concrete track has been monitored at embankment sections of the ◯◯ High-speed Line, resulting in the concerns on the safety of railway operation. In order to establish an effective maintenance plan for the concrete track railway exceeding the allowable residual settlement, it is essential to reasonably predict their long-term settlement behavior during the public period. In this study, we developed a model for predicting the long-term settlement behavior of concrete track using recurrent neural network (RNN) and examined the applicability of the developed model.

Analysis of Residual Settlement of Concrete Track Roadbed for High-Speed Railway (고속철도 콘크리트궤도 토공노반의 잔류침하 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Kwon, Oh-Jung;Jeong, Uhn-Ghi
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.369-374
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the analysis of the residual settlement measured data, test results and reference to understand the residual settlement behavior of concrete track roadbed

  • PDF

Numerical Analysis of Light-weight Air Foamed Soils using Dredged Marine Clay for Soft Ground Improvement Method (준설점토 활용 경량혼합토의 연약지반개량공법 수치해석)

  • Yoon, Gillim;Kim, Sunbin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper presents the results of a numerical investigation on applicability of Light-weighted Foam Soils (LWFS) consisted of dredged soils for soft ground improvement. The engineering properties of LWFS were comprehensively investigated based on the previous experimental tests. And three dimensional numerical models which reflect soft ground conditions were adopted to evaluate the applicability of LWFS compared to SCP and DCM. A number of cases were analyzed using a stress-pore pressure coupled model. The results indicated that LWFS method enables to reduce more settlement, lateral flow and heaving than SCP method and enable to reduce more residual settlement than DCM method. Also it was revealed that such effect depends on the properties of LWFS such as unit weight, unconfined compressive strength, deformation modulus and Poisson's ratio.

Investigation of Settlement of Concrete Track on High-Speed Railway Due to Groundwater Variation (지하수위 변동에 따른 고속철도 콘크리트궤도의 침하 영향 검토)

  • Lee, Hyunjung;Choi, Yeong-Tae;Lee, Ilwha;Lee, Minsoo;Lee, TaeGyu
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2017
  • Groundwater drawdown was pointed out as one of the causes of induced settlement on high speed railways, especially concrete track. In this study, the effect of groundwater variation on settlement was evaluated through a comparison of field measurements with numerical analysis results. A trial and error method, i.e., repeated numerical analyses by changing material properties, was used to calibrate the model. The model was applied to investigate the effect of groundwater drawdown, thickness of soft layer, and embankment height on residual settlement after concrete track completion. A soft layer thicker than 4m would result in more than 30mm of settlement; a detailed analysis of groundwater behavior thus should be conducted from the design stage to construction.