• 제목/요약/키워드: 잔류응력재분포

검색결과 59건 처리시간 0.026초

Padding plate 용접구조의 인장 정하중 이력에 의한 용접잔류응력 변화 및 피로강도에의 영향 (Re-distribution of Welding Residual Stress Due to Tensile Pre-load and Its Effects on Fatigue Strength in Padding Plate Weldment)

  • 강성원;김영욱;김화수;김도현
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.75-82
    • /
    • 2001
  • 건조 후 수행하는 수압시험 또는 화물의 적재 등과 같은 정하중은 파랑변동하중에 비하여 선체구조물에 상당히 큰 응력을 유발한다. 이러한 정하중이력에 의하여, 선체구조물의 응력집중으로 인해 피로강도가 문제되는 용접이음부에서는, 재료의 탄소성 거동에 의하여 초기용접잔류응력이 상당히 이완될 것으로 예상된다. 따라서, 이러한 용접이음부의 피로강도를 평가할 때에는 이완된 잔류응력의 영향을 고려하는 것이 보다 합리적이다. 본 연구에서는 선체구조물의 여러 가지 용접형태 중 Padding plate가 용접된 형태에 대하여 정하중이력($0.5{\sigma}Y,\;0.85{\sigma}Y$)에 의한 초기 용접잔류응력의 변화를 측정하며, 잔류응력의 변화가 피로강도에 미치는 영향을 검토한다.

  • PDF

용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구 (A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

CFRP 복합재압력용기의 충격후 잔류강도저하특성 평가 (Evaluation of the Residual Strength of CFRP Composite Pressure Vessel After Low Velocity Impact)

  • 박재범;김동륜;황태경
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.439-442
    • /
    • 2009
  • 본 논문에서는 CFRP 복합재 압력용기의 저속충격후 잔류강도 저하량의 정량적인 연구 결과에 대해 논한다. 낙하식 충격시험을 이용하여 복합재 압력용기에 다양한 충격에너지별 충격하중을 가한 후, 압력용기를 원환시험편으로 가공하여, 각 시험편의 원주방향 파열압력이 측정되었다. 또한, 유한요소모델을 구축하여 충격에너지별 변형거동과 응력분포에 대해서도 고찰하였다. 본 연구결과 저속 충격후 CFRP 복합재 압력용기의 잔류강도 저하량을 정량적으로 평가할 수 있는 실험기법이 개발되었다.

  • PDF

Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선 (The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening)

  • 이승호;김희송
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

세라믹/금속 접합재에 대한 응력특이성의 해석 (Analysis of Stress Singularity on Ceramics/Metal Bonded Joints)

  • 김기성;김희송;정남용
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3058-3067
    • /
    • 1996
  • With increasing use of ceramics/metal bonded joints, It is required to analyze the residual stress distribution and stress singularity at an interface edge for its bonded joints. In this paper, the residual stress distribution and stress singularity index of the ceramics/metal bonded joints were analyzed by using 2-dimensional elastic boundary element method. The variations of residual stress distribution and stress singularity index are studied with changes for the combinations of ceramics/metal bodned joints.

Folded Plate Theory에 의한 압축플랜지의 비선형 해석 (Nonlinear Analysis of Compressive Flange Based on Folded Plate Theory)

  • 정수형;심재수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.169-178
    • /
    • 2008
  • 압축플랜지의 설계는 단순히 종방향 보강재와 횡방향 보강재로 둘러싸인 서브패널(sub-panel)의 극한거동에 대해 적절한 안전율을 도입하여 이루어져 왔다. 그러나, 종방향 보강재의 수와 강성, 횡방향 보강재의 간격, 초기 변형량과 잔류응력의 분포 등 제 영향을 고려해서 압축플랜지 전체의 극한강도를 결정하는 것이 합리적이다. 본 연구에서는 Folded Plate 이론에 근거하여 압축플랜지에 대해 기하강성의 영향, 재료적 비선형성을 고려한 해석 프로그램을 개발하고 이를 바탕으로 국내에서 실제 시공된 강박스거더교의 압축플랜지에 적용하였다.

$Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가 (Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint)

  • 박영철;오세욱;조용배
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

절단에 따른 용접부 잔류응력 재분포 해석 (Analysis of residual stress redistribution of weldment due to cutting)

  • 양승용;구병춘;최성규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1074-1079
    • /
    • 2003
  • In this paper, we conducted finite element analysis to investigate the residual stress redistributions of weldment due to cutting. To evaluate the effect of the residual stress on the fatigue behavior of weldment, test specimens are commonly cut from the weldment, but the distributions of the residual stress in the cut specimen should be different from those in the original weldment. Our work is to evaluate the difference between the residual stresses before and after weldment-cutting to understand the effect of cutting on the residual stress. Transient heat analysis, elastic-plastic mechanical analysis and element removal technique are used to simulate the welding and cutting procedures on the commercial finite element code ABAQUS.

  • PDF

용접잔류응력장에서 피로균열의 전파에 따른 잔류응력 재분포에 대한 해석적 평가 (An Evaluation of Residual Stress Redistribution in the Welding Residual Stress Field Caused by Fatigue Crack Propagation by Finite Element Method)

  • 박응준;김응준
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.92-96
    • /
    • 2008
  • An investigation was performed to predict residual stress redistribution for the crack propagation initially through tensile residual stress field. The analytical method, which is based on Dugdale model by finite element analysis using elastic analysis method considering the superposition principle, was proposed to estimate the redistribution of residual stress caused by crack propagation. The various aspect of distribution of residual stress caused by crack propagation was examined based on the configuration change of specimen. The analysis results show that the aspect of redistribution of residual stress caused by crack propagation depends on the width of the specimen provided that the initial distribution of residual stress is identical.