• Title/Summary/Keyword: 잔골재 입도크기

Search Result 13, Processing Time 0.027 seconds

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

A Study on the Fundamental Properties of Concrete Using of the Oyster Shells (굴패각 콘크리트의 기본특성에 관한 연구)

  • Koo, Hae-Shik;Jun, Hak-Su;An, Yong-Deok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study is to analyze the application of the oyster shells as a substitute fine aggregate of concrete. For this purpose, the fundamental experiments of the composed materials and the variations of the main factors on it were considered and then the variations of workability and strength properties of the specimens with each case were also studied. The experimental results on the properties as construction material showed that the use of oyster shells in concrete would not cause abnormal chemical reactions or lead to the formation of any new objects, the workability and strengths decreased with increase in proportion of oyster shells. The compressive strength of concrete with oyster shells is developed as much as that of normal concrete and the grain size of oyster shells is superior on 3.0~5.0mm and the percentage of substitution of them to fine aggregate about 30% from the properties of concrete with them. The relationship equation between compressive strength and tensile strength is ( ).

Influence of the Fine and Coarse Aggregate on the Fluidity of High Flowing Concrete (고유동콘크리트의 유동특성에 미치는 잔골재 및 굵은골재의 영향)

  • 김규용;이정율;박선규;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.301-306
    • /
    • 1998
  • Aggregate as the component of High Flowing Concrete has much influence on the properties of High Flowing Concrete according to the quality and condition because the aggregate occupy a lot of concrete volume. The shape and size of aggregate affect a lot spatial passibility and fillingability. The segregation is easy to occur when the rate of Fine aggregate is high so that Fluidity is much affected by aggregate factor. In this study, therefore, we try to understand the various fluidity according to the fine aggregate of standard grade rang, the size of Coarse aggregate and the rate of fine aggregate to confirm the manufacturing possibility of High Flowing Concrete by examination on the influence of fresh state of high flowing concrete such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.

Fine Aggregates Size Effect on Rheological Behavior of Mortar (잔골재 입자 크기에 따른 모르타르의 레올로지 거동 특성)

  • Lee, Jin Hyun;Kim, Jae Hong;Kim, Myeong Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5636-5645
    • /
    • 2015
  • Physical characteristics of aggregates affect the workability and strength of mortar and concrete, which include their fineness ratio, particle size distribution and water absorption. The workability of construction materials decreases if the incorporated fine aggregates show improper size distribution of their particles. This study shows the particle size effect on the rheological behavior of mortar and provides basic information for evaluating its workability. A mini-slump flow test was adopted to evaluate the workability of mortar. In addition, its plastic viscosity and yield stress were measured using a rheometer for building materials. The sand samples were prepared by sieving river sand and sorting out with their particle sizes. As a result, it was observed that the fines less than 0.7 mm increases the yield stress and plastic viscosity of the mortar samples. If the fines are less than 0.34 mm, the water absorption of the fines dominates change on the workability.

Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete (잔골재 특성이 굳지 않은 지오폴리머 콘크리트에 미치는 영향)

  • Cho, Young-Hoon;An, Eung-Mo;Lee, Su-Jeong;Chon, Chul-Min;Kim, Dong-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2016
  • It is possible that aggregates add on to geopolymer based fly ash to mix mortar and concrete like cement. This is necessary to evaluate mineral composition, particle shape, surface, size distribution, density and absorption ratio for fine aggregates due to few detailed research to examine influence of fine aggregates properties on unhardened geopolymer concrete. In this research, used two different fine aggregates, Jumunjin sand(having quartz, mica, feldspar, pyroxene in mineral composition, more than 96% of total size between -0.60 and +0.30mm, angular shape and rough surface) and ISO sand(having almost all quartz in mineral composition, more than 51% size between -1.40 and +0.60mm, simultaneously varied size distribution, spherical shape and smooth surface). After an experimental result of the varied ratio of Si/Al=1.0-4.1 geopolymer paste, mix proportion respectively applied Si/Al=1.5 having the highest compressive strength to mortar and Si/Al=3.5 having the highest consistency to concrete. Geopolymer mortar by mixing with Jumunjin and ISO sand in varied range of 20-50wt.% showed flow size increase between 69.5 and 112.0mm, between 70.5 and 126.0mm respectively. Geopolymer concrete at an addition of 77wt.% of total aggregates ratio showed that average compressive strength was 32MPa and the consistency was favorable to molding. Since ISO sand observing varied size distribution, spherical shape, smooth surface, low absorption ratio resulted in advantageous properties on consistency of geopolymer, geopolymer concrete can be suitable for using the fine aggregates similar to ISO sand.

Strength and sulfuric acid resistance properties of cement mortar containing copper slag (동 제련 슬래그를 사용한 시멘트 모르타르의 강도 및 황산저항 특성)

  • Hong, Chang Woo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.101-108
    • /
    • 2016
  • Each year, more than seven hundred thousand tons of copper slag are generated in Korea as a byproduct during the production of copper. Due to the large amount of copper slag produced, there has been increased interest in the use of copper slag as a construction material. To evaluate the potential of copper slag as a construction material, laboratory evaluations were conducted in this study, and three particle shapes and replacement rates of river sand were selected as experimental variables. Strength, air-void characteristics, and sulfuric acid resistance were the three properties evaluated to assess whether copper slag can be used as a construction material. Test results indicate that the gradation of copper slag has an effect on strength, and the maximum strength was achieved when 60 % of river sand was replaced with copper slag. In addition, when compared with ordinary Portland cement mortar, replacing river sand with copper slag reduced air void size and increased sulfuric acid resistance.